Effective field theory approach for low energy elastic scattering of protons

Eun Jin In

Center for Exotic Nuclear Studies

2021.03.24

Contents

- 1. Introduction
 - 1.1 Motivation
 - 1.2 Effective field theory (EFT)
- 2. Cluster Effective Field Theory (Cluster EFT)
 - 2.1 Calculation of differential cross section for elastic p+¹²C scattering2.2 Results
- 3. Effective field theory (EFT) description of *NN* scattering
 - 3.1 Study of role of unitarity in EFT descriptions
 - 3.2 Relation between EFT and R-matrix
- 4. Summary

1. Introduction: Motivation

Resonant capture reaction A(X, γ)B

TARGET A

EXCITED STATE Er OF COMPOUND NUCLEUS B (RESONANCE)

FINAL STATE OF COMPOUND NUCLEUS B

Figure from D.D. Clayton "Principles of stellar evolution and nucleosynthesis".

1. Introduction: Motivation

J.A. Shusterman et al., Nature 565, 328–330 (2019)

The surprisingly large neutron capture cross-section of ⁸⁸Zr

Jennifer A. Shusterman^{1,2,3}*, Nicholas D. Scielzo¹, Keenan J. Thomas¹, Eric B. Norman⁴, Suzanne E. Lapi⁵, C. Shaun Loveless⁵, Nickie J. Peters⁶, J. David Robertson⁶, Dawn A. Shaughnessy¹ & Anton P. Tonchev¹

1. Introduction: Motivation I: elastic p+¹²C scattering

Radiative proton capture reaction, ¹²C(p, γ)¹³N

1. Introduction: Motivation II: NN scattering

- Regularization
- To handle the divergences in
 - loop integrals
 - Lippmann-Schwinger Equation ex) $T = V + \int_0^\infty d\vec{l} \, V G_0 T$, $\langle \vec{p} | V | \vec{p}' \rangle = C_0$
- Momentum cutoff regularization^{1,2)} $\int_0^\infty dl \rightarrow \int_0^\Lambda dl = \int_0^\infty dl R_\Lambda(l)$
- Nicely meets the EFT philosophy = separation of scales
 - ✓ But it often breaks the unitarity of systems !
- Relation between the EFT and R-matrix
- Λ: momentum cutoff (EFT)
- *a*: channel radius (R-matrix)
 - ✓ In this work, we study of relation between the EFT and the R-matrix.

1. Introduction: Effective Field Theory

- EFT provides a general approach to calculate low-energy observables by scale separation^{1),2)}
- Key elements of an EFT
- Scale separation
- observables at typical momentum scale Q
- short-range physics at scale Λ , where $\Lambda \gg Q$
- $Q/\Lambda \sim expansion parameter$

Low momentum region

High momentum region

Λ

- Systematic expansion in Q/Λ :
- effective Lagrangian:

$$\mathcal{L} = \sum_{\nu,i} c_{\nu,i} \hat{O}_{\nu,i} \quad \text{where } \hat{O}_{\nu,i} \sim \text{order of the } (Q/\Lambda)^{\nu}$$

- a limited number of low-energy constants (LECs) enter at a given EFT order
- predict observables at *Q*-scale with controlled uncertainties at each order

p

1. Introduction: Effective Field Theory

Low-energy constant (LECs)

Low energy NN scattering

$$L^{EFT} = N^{+}i\partial_{t}N - N^{+}\frac{\nabla^{2}}{2m_{N}}N - \frac{1}{2}C_{0}(N^{+}N)^{2} - \frac{1}{2}C_{2}(N^{+}\nabla^{2}N)(N^{+}N) + h.c. + \dots$$

Low energy constant (LECs)

✓ Contain the information of high momentum dynamics

 \checkmark Fit to the experimental data

1. Introduction: Effective Field Theory

- Low-energy Effective field theory (EFT)
- Power Counting (Counting rule)¹⁾

Here T is some transition amplitude.

$$T_{EFT} = coef. \left[1 + \frac{Q}{\Lambda} + \left(\frac{Q}{\Lambda}\right)^2 + \left(\frac{Q}{\Lambda}\right)^3 + \left(\frac{Q}{\Lambda}\right)^4 + \dots \right]_{uncertainty}$$

1. Introduction: Pionless EFT

- Pionless Effective Field Theory (EFT)
- Low-energy EFT pion = Pionless EFT
 - $Q \sim$ small momentum scale in the system
 - $\Lambda \sim \text{pion mass}(m_{\pi})$

Low momentum region (Relevant)	High momentum region (Irrelevant)		
$\Lambda = m_{\pi}$			

1. Introduction: Halo/Cluster EFT

- Halo/Cluster Effective Field Theory(EFT)^{1,2)}
- degree of freedom: core + valence nucleons
 - $Q \sim \sqrt{mS_n}$ $\Lambda \sim \sqrt{mE_c^*}$
- S_n : neutron separation energy
- E_C^* : core excitation energy
- scale separation
 - $Q \ll \Lambda \rightarrow$ systematic expansion in observables
 - Short-range effects are included in LECs.

1. Introduction: Effective Range Expansion (ERE)

LECs can be determined by effective range parameter.

✓ LEC can be determined by effective range parameter

Contents

- 1. Introduction
 - 1.1 Motivation
 - 1.2 Effective field theory (EFT)
- 2. Cluster Effective Field Theory (Cluster EFT)
 - 2.1 Calculation of differential cross section for elastic p+¹²C scattering2.2 Results
- 3. Effective field theory (EFT) description of NN scattering
 - 3.1 Study of role of unitarity in EFT descriptions
 - 3.2 Relation between EFT and R-matrix
- 4. Summary

2. Cluster EFT for elastic p+¹²C scattering Power Counting

- Separation of scales^{1,2}):
- small momentum scale of the system $Q \sim \sqrt{2\mu E_r} \sim 30,60 \text{ MeV}$
- large momentum scale of the system $\Lambda \sim \sqrt{2\mu E_c^*} \sim 90 \text{ MeV}$, where $\Lambda \gg Q$ $E_c^* = 4.439 \text{ MeV}$
- expansion parameter in $Q/\Lambda \approx \frac{1}{3}$ or $\frac{1}{2}$

2. Cluster EFT for elastic p+¹²C scattering Lagrangian, Scattering amplitudes

•
$$\mathcal{L} = p^{\dagger} \left(iD_{t} + \frac{D^{2}}{2m_{p}} \right) p + c^{\dagger} \left(iD_{t} + \frac{D^{2}}{2m_{c}} \right) c + \sum_{x = \frac{1}{2}^{+}, \frac{3}{2}^{-}, \frac{5}{2}^{+}} d_{x}^{\dagger} \left[\Delta_{x} + \sum_{n=0}^{N} v_{n,x} \left(iD_{t} + \frac{D^{2}}{2m_{tot}} \right)^{n} \right] d_{x}$$

 $- \sum_{x = \frac{1}{2}^{+}, \frac{3}{2}^{-}, \frac{5}{2}^{+}} g_{x} \left[d_{x}^{\dagger} \left[p \underset{\nabla}{\leftrightarrow} c \right]_{x} + h. c. \right]^{1,2}$

where p is the proton field with mass m_p , c is the ¹²C field with mass m_c ,

 d_x are the dicluster field with mass m_{tot} ,

 D_{μ} is a covariant derivative, N is 1 for s-, p- waves and 2 for d-waves,

 Δ_x are mass difference, $v_{n,x} = \pm 1$

 g_x are coupling constants when the dicluster field breaks up into a proton and a core,

$$\left[p \underset{\nabla}{\leftrightarrow} c\right]_{\frac{3}{2}^{-}} = \sum_{m_s, m_l} C_{1m_l, \frac{1}{2}m_s}^{\frac{3}{2}m} (p \underset{\nabla}{\leftrightarrow} c) \text{ with } p \underset{\nabla}{\leftrightarrow} c = p\left(\frac{m_c \overline{\nabla} - m_p \overline{\nabla}}{m_{tot}}\right) c$$

• elastic scattering amplitude for l = 0, 1, 2 channels

 $T_{SC}(E)$: Coulomb-modified strong scattering amplitude

2. Cluster EFT for elastic p+¹²C scattering Results: differential cross sections

Parameter Set I			Parameter Set II			Parameter Set III			
level	S _{1/2}	P _{3/2}	D _{5/2}	S _{1/2}	P _{3/2}	D _{5/2}	S _{1/2}	P _{3/2}	D _{5/2}
a (fm ^{2L+1})	-285 ± 11	-17.2 ± 4.06	-47.8 ± 2.30	-323 ± 3.72	-13.0 ± 0.47	-10.9 ± 2.62	-323 ± 3.75	-13.7 ± 0.43	-41.4 ± 1.41
r (fm ^{1-2L})	1.46 ± 0.02	-1.35 ± 0.77	-0.50 ± 0.04	1.53 ± 0.00	-2.01 ± 0.08	-4.39 ± 1.23	1.53 ± 0.00	-1.90 ± 0.07	-0.61 ± 0.02
P (fm ^{3-2L})	-3.23 ± 0.89	3.16 ± 10.92	0.54 ± 0.97			-52.9 ± 17.1			

2. Cluster EFT for elastic p+¹²C scattering Results: phase shifts

2. Cluster EFT for elastic p+¹²C scattering Summary

- Differential cross section of the elastic ¹²C(p, p)¹²C scattering was calculated by using cluster effective field theory.
- The three resonance states $(J_{\pi} = \frac{1}{2}^+, \frac{3}{2}^-, \frac{5}{2}^+)$ of ¹³N were considered.
- We obtained the effective range parameters for elastic ¹²C(p, p)¹²C scattering.
- Comparing the results calculated at leading order (LO) and next-to-leading order (NLO), we described the elastic ¹²C(p, p)¹²C scattering systematically.
- Future work
 - ${}^{12}C(p,\gamma){}^{13}N$ reaction
 - (1) Calculate radiative capture amplitude by using Cluster EFT
 - (2) Obtain differential cross section \rightarrow total cross section
 - ✓ Reaction rates $N_A < \sigma v >$ at the characteristic stellar temperatures T

$$N_A < \sigma v > = \left(\frac{8}{\pi\mu}\right)^{\frac{1}{2}} \frac{N_A}{(kT)^{3/2}} \int_0^\infty \boldsymbol{\sigma}(\boldsymbol{E}) E \exp\left(-\frac{E}{kT}\right) dE$$

✓ S-factor

$$S(E) = Eexp(2\pi\eta)\boldsymbol{\sigma_{tot}}(\boldsymbol{E})$$

Contents

- 1. Introduction
 - 1.1 Motivation
 - 1.2 Effective field theory (EFT)
- 2. Cluster Effective Field Theory (Cluster EFT)

2.1 Calculation of differential cross section for elastic p+¹²C scattering2.2 Results

- 3. Effective field theory (EFT) description of *NN* scattering
 - 3.1 Study of role of unitarity in EFT descriptions
 - 3.2 Relation between EFT and R-matrix
- 4. Summary

3.1 Role of unitarity in EFT descriptions **Motivation**

- Regularization
- To handle the divergence in
 - loop integrals
 - Lippmann-Schwinger Equation ex) $T = V + \int_0^\infty d\vec{l} \, V G_0 T$, $\langle \vec{p} | V | \vec{p}' \rangle = C_0$
- Momentum cutoff regularization^{1,2)} $\int_0^\infty dl \rightarrow \int_0^\Lambda dl = \int_0^\infty dl R_\Lambda(l)$
- Nicely meets the EFT philosophy = separation of scales
 - But it often breaks the unitarity of systems !
- Unitarity
- Conservation of probability density
- $S^{\dagger}S = 1$, S: S-matrix
- If unitarity is violated, $S^{\dagger}S \neq 1$
- Our work
- np ¹S₀ scattering
- Regulators Unitarity-violating
 - Unitarity-preserving
- Methods
 - EFT with only nucleons
 - Dibaryon field
- Aim: To understand the phenomenological role of unitarity in EFT descriptions

[1] S.R. Beane et al., Nucl. Phys. A 632, 445 (1998). [2] D.R. Phillips et al., Ann. Phy. 263, 255 (1998)

3.1 Role of unitarity in EFT descriptions EFT with only nucleons

Lippmann-Schwinger Equation

•
$$T(p',p;E) = V(p',p) + \int \frac{d^3 \vec{l}}{(2\pi)^3} V(p',l) \frac{M}{EM - l^2 + i\epsilon} T(l,p;E) \mathbf{R}_{\Lambda}(l)$$

 $R_{\Lambda}(l)$: regulator with a momentum cutoff Λ

Momentum cutoff regularization of loop calculation

$$\int_0^\infty dl \ \rightarrow \int_0^\Lambda dl = \int_0^\infty dl \ R_\Lambda(l)$$

[1] S.R. Beane et al., Nucl. Phys. A 632, 445 (1998).

3.1 Role of unitarity in EFT descriptions EFT with only nucleons

• The np ¹S₀ phase shifts:

$$k \equiv \sqrt{ME} : \text{on-shell momentum}$$

$$k \equiv \sqrt{ME} : \text{on-shell momentum}$$

$$= -\frac{4\pi}{M} \frac{1}{T(k)k;E)} + ik$$

$$= -\frac{4\pi}{M} \left(\frac{(1+\gamma_0 C_2)^2}{C_0 + 2C_2 k^2 - C_2^2 (\gamma_2 - \gamma_0 k^2)} \right) + J_{\Lambda}(k) + ik(1-R_{\Lambda}(k))$$

$$J_{\Lambda}(k) \equiv \frac{2}{\pi} P \int_0^\infty dl R_{\Lambda}(l) \frac{l^2}{k^2 - l^2}, \quad \gamma_n \equiv M \int_0^\infty \frac{d^3 \vec{l}}{(2\pi)^3} R_{\Lambda}(l) l^n \quad (n = 0, 1)$$

• If $\mathbf{R}_{\Lambda}(\mathbf{k}) \neq \mathbf{1}$, $k \cot \delta$: complex $\rightarrow \delta$: complex, $S^{\dagger}S \neq 1$ ($\therefore S = e^{2i\delta}$)

That is, unitarity is preserved if and only if $R_{\Lambda}(k) = 1$!

Unitarity	Condition	Regulator, $R_{\Lambda}(l)$	Name
Unitority violating	$D(h) \neq 1$	$e^{-rac{l^2}{\Lambda^2}}$	G2
Unitality-violating	$K_{\Lambda}(\kappa) \neq 1$	$e^{-rac{l^4}{\Lambda^4}}$	G4
Unitarity-preserving		$e^{-\frac{(l^2-k^2)}{\Lambda^2}}$	EG2
	$R_{\Lambda}(k) = 1$	$e^{-\left(\frac{l^2-k^2}{\Lambda^2}\right)^2}$	EG4
		$\theta(\Lambda - l)$ in $k < \Lambda$	SC

(G: gaussian form, EG: energy-dependent gaussian form, SC: sharp cutoff)

3.1 Role of unitarity in EFT descriptions Results: EFT with only nucleons

- The *np* ¹S₀ phase shifts:
- Comparison of δ_{th} with δ_{exp} , $\left|\delta_{th} \delta_{exp}\right|$

⇒ unitarity-preserving regulators(EG2, EG4, SC): better agreement

3.1 Role of unitarity in EFT descriptions **Dibaryon field**

- $\mathcal{L} = N^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2M} \right) N D^{\dagger} \left(i\partial_t + \frac{\nabla^2}{4M} \Delta m \right) D \left(\frac{g}{2} D^{\dagger} N N + h.c \right) + \cdots .^{1}$
- Scattering amplitude

• Dressed di-baryon propagator

• Self-energy

$$\Pi_{\rm D}(P) = \int \frac{d^3 \vec{l}}{(2\pi)^3} \frac{R_{\Lambda}(l)}{P^0 - \frac{l^2}{M} - \frac{k^2}{4M} + i\epsilon} = -\frac{Mg^2}{4\pi} (-J_{\Lambda}(k) + ik R_{\Lambda}(k))$$

• Results
$$k\cot\delta = -\frac{4\pi}{M} \left(-\frac{k^2}{Mg^2} + \frac{\Delta m}{g^2} \right) + J_{\Lambda}(k) + \frac{ik(1 - R_{\Lambda}(k))}{J_{\Lambda}(k)}$$

 $J_{\Lambda}(k) \equiv \frac{2}{\pi} P \int_0^\infty dl \, R(l) \frac{l^2}{k^2 - l^2}$

[1] D.B. Kaplan et al., Nucl. Phys. B 478, 629 (1996).

3.1 Role of unitarity in EFT descriptions **Results: Dibaryon field**

- The *np* ¹S₀ phase shifts:
- Comparison of δ_{th} with δ_{exp} , $\left|\delta_{th} \delta_{exp}\right|$

⇒ unitarity-preserving regulators(EG2, EG4, SC): better agreement

3.2 Relation between EFT and R-matrix **R-matrix**

- R-matrix^{1,2,3)}
- Main idea²): to divide the space into 2 regions (channel radius a)
 - Internal ($r \le a$): Nuclear + Coulomb interactions
 - External (r > a): Only Coulomb

R-function

$$R_l = \sum_{\lambda} \frac{\gamma_{\lambda} \gamma_{\lambda}}{E_{\lambda} - E}$$

 E_{λ} : resonance energy $\gamma_{\lambda} = \sqrt{\frac{\hbar^2}{2\mu a}} u_{\lambda}(a)$ reduced-width amplitude

• R-matrix

$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E}$$

R-matrix parameters have dependence on channel radius.

E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947).
 P.L. Kapur and R. Peierls, Proc. Roy. Soc. A 166, 277-295 (1938).
 A.M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257-353 (1958).

3.2 Relation between EFT and R-matrix **R-matrix, ERE and EFT**

- T.Teichmann¹⁾ showed the possibility to find the connection between R-matrix and ERE.
- The relation between the ERE and the R-matrix theory by G.M.Hale²⁾.
 - np elastic scattering in the ¹S₀ channel
 - channel radius dependence of the R-matrix parameters Γ , E_r
 - effective range parameters in ERE a_0 , r_0

Relation between a_p from the R-matrix and Λ_p from the EFT

- a_p : lower bound of the channel radius
- Λ_p : upper bound of the momentum cutoff

3.2 Relation between EFT and R-matrix Scattering amplitude in R-matrix

General expression for single-level and single-channel cases, R-matrix/R-function

 $R_{l}(E; a) = \frac{\gamma_{l\lambda}^{2}(a)}{E_{\lambda}(a) - E}$ where *a* is the channel radius, $\gamma_{l\lambda}$ is the reduced-width amplitudes

The scattering matrix $U_l = e^{2i\delta_l(E)} = \left| \frac{w_l^{(-)}(E,r)}{w_l^{(+)}(E,r)} \frac{1 - (L_l - B_l)^* R_l(E;a)}{1 - (L_l - B_l) R_l(E;a)} \right|$

where $w_{l}^{(+)}(E,r)$ and $w_{l}^{(-)}(E,r)$ are the outgoing and ingoing Coulomb waves, $L_{l} = \left[r \frac{w_{l}^{(+)}(E,r)/dr}{w_{l}^{(+)}(E,r)} \right] , L_{l}^{*} = \left[r \frac{w_{l}^{(-)}(E,r)/dr}{w_{l}^{(-)}(E,r)} \right] , B_{l} \text{ is the arbitrary boundary constant,}$

 $k = \sqrt{2\mu E}/\hbar$ is the wave number in the center of mass, μ the reduced mass of the scattering pair, and E_{λ} the energy eigenvalues.

let us define $g_R^2 \equiv a \gamma_{I\lambda}^2$

 $k\cot\delta_{l}(E) = \frac{\boldsymbol{E}_{\lambda} - \frac{\hbar^{2}k^{2}}{2\mu} + kg_{R}^{2}\tan ka + g_{R}^{2}B_{l}\frac{1}{a}}{\boldsymbol{g}_{R}^{2} - \left(E_{\lambda} - \frac{\hbar^{2}k^{2}}{2\mu}\right)\frac{1}{k}\tan ka - g_{R}^{2}B_{l}\frac{1}{ak}\tan ka}$ The scattering amplitude $= \frac{E_{\lambda}}{a^2 - aE_{\lambda}} + \frac{3ag_R^4 - 3g_R^2 \left(a^2 E_{\lambda} + \frac{\hbar^2}{2\mu}\right) - a^3 E_{\lambda}}{3(a^2 - aE_{\lambda})^2} k^2 + \cdots$

3.2 Relation between EFT and R-matrix **R-matrix and EFT**

- A spin-singlet ${}^{1}S_{0}$ channel of np scattering
- Relation between the EFT and R-matrix
 - Effective Field Theory (EFT)

$$k\cot\delta = -\frac{4\pi}{M} \left(-\frac{k^2}{Mg^2} + \frac{\Delta m}{g^2} \right) + J_{\Lambda}(k) + ik(1 - R_{\Lambda}(k))$$

R-matrix

$$k\cot\delta = \frac{E_{\lambda} - \frac{\hbar^{2}k^{2}}{2\mu} + kg_{R}^{2}\tan ka}{g_{R}^{2} - \left(E_{\lambda} - \frac{\hbar^{2}k^{2}}{2\mu}\right)\frac{1}{k}\tan ka} = \frac{E_{\lambda}}{g_{R}^{2} - aE_{\lambda}} + \frac{3ag_{R}^{4} - 3g_{R}^{2}\left(a^{2}E_{\lambda} + \frac{\hbar^{2}}{2\mu}\right) - a^{3}E_{\lambda}}{3(g_{R}^{2} - aE_{\lambda})^{2}} k^{2} + \cdots$$

Relation between the EFT and R-matrix

$$\frac{1}{\frac{4\pi}{M}\frac{\Delta m}{g^2} - J_A(\mathbf{0})} = \mathbf{a} - \frac{g_R^2}{E_\lambda} \qquad \text{where } J_A(0) \sim \Lambda \qquad \Lambda \sim \frac{1}{\mathbf{a}}$$

3.2 Relation between EFT and R-matrix Critical values of channel radius in R-matrix

- A spin-singlet ¹S₀ channel of np scattering
 - R-matrix
 - $k \cot \delta_l(E) = \frac{E_{\lambda}}{g_R^2 aE_{\lambda}} + \frac{3ag_R^4 3g_R^2 \left(a^2 E_{\lambda} + \frac{\hbar^2}{2\mu}\right) a^3 E_{\lambda}}{3\left(g_R^2 aE_{\lambda}\right)^2} k^2 + \cdots$
- ERE

•
$$k \cot \delta = -\frac{1}{a_0} + \frac{1}{2}r_0k^2 + \cdots$$

- $a_0 = (-23.740 \pm 0.020)$ fm, $r_0 = (2.77 \pm 0.05)$ fm
- Relation between R-matrix parameters and ERE parameters¹⁾

3.2 Relation between EFT and R-matrix Critical values of momentum cutoff in EFT

- For ${}^{1}S_{0}$ channel of np scattering, we determine the values of the LECs ($\Delta m, g^{2}$).
- experimental values $a_0 = (-23.740 \pm 0.020)$ fm, $r_0 = (2.77 \pm 0.05)$ fm
- Effective Field Theory (EFT)

• ERE

$$k\cot\delta = -\frac{4\pi}{M} \left(-\frac{k^2}{Mg^2} + \frac{\Delta m}{g^2} \right) + J_{\Lambda}(k) + ik(1 - R_{\Lambda}(k)) \qquad k \cot\delta = -\frac{1}{a_0} + \frac{1}{2}r_0k^2 + \cdots$$

$$\frac{Mg^2}{4\pi} = \frac{2}{M} \left(r_0 - \frac{\partial}{\partial k^2} J^{\Lambda}(k) \Big|_{k=0} \right)^{-1} \Lambda_p(r_0; \mathbf{R}^{\Lambda}) = \frac{\Lambda}{r_0} \frac{\partial}{\partial k^2} J_{\Lambda}(k^2) \Big|_{k^2=0}$$
$$\Delta m = \frac{Mg^2}{4\pi} \left(\frac{1}{a_0} + J^{\Lambda}(0) \right)$$

where $J_{\Lambda}(k) \equiv \frac{2}{\pi} P \int_0^\infty dl \ R(l) \frac{l^2}{k^2 - l^2}$

3.2 Relation between EFT and R-matrix Relation between two critical values

A spin-singlet ${}^{1}S_{0}$ channel of *np* scattering

R-matrix

$$a_p(a_0, r_0) = a_0 - a_0 \left(1 - \frac{3r_0}{2a_0}\right)^{\frac{1}{3}}$$
• EFT

$$\Lambda_p(a_0, r_0; R^{\Lambda}) = \frac{\Lambda}{r_0} \frac{\partial}{\partial k^2} J_{\Lambda}(k^2) \Big|_{k^2 = 0}$$

The behavior of the Λ_p and a_p in accordance with varying a_0, r_0

3.2 Relation between EFT and R-matrix Relation between two critical values

• A spin-singlet ${}^{1}S_{0}$ channel of np scattering

$$P(a_0, r_0; R^{\Lambda}) = a_p \Lambda_p = C\left(\frac{a_0}{r_0} - \frac{a_0}{r_0} \left(1 - \frac{3r_0}{2a_0}\right)^{\frac{1}{3}}\right) \qquad P(a_0, r_0; R^{\Lambda}) = a_{ch}^{min} \Lambda_p \propto \frac{a_0}{r_0}.$$

• The behavior of the $P(a_0, r_0; R^{\Lambda})$ in accordance with varying a_0/r_0

3.2 Relation between EFT and R-matrix **Summary**

- The R-matrix, which is one of the methods to describe the resonance in nuclei, determines the resonance parameters (energy eigenvalues of levels and reduced-width) based on experimental data.
- The resonance parameters show dependence on the channel radius, which is the boundary to divide the configuration space into two region: internal and external regions.
- In EFT, LECs have a dependence on momentum cutoff Λ.
- For the first, we found the relation between two critical values (a_p, Λ_p) of the channel radius *a* in R-matrix and momentum cutoff Λ in EFT.
- As a results, we can see the possibility to give constraint of these two arbitrary values.
- Future work
 - Explore to other reactions such as elastic p+¹²C scattering

Thank you for your attention