Isoscalar dipole excitations in N=Z nuclei

Panagiota Papakonstantinou IBS Center for Exotic Nuclear Studies, August 12, 2020

And discussion based on RISP internal studies and reports [PP2017,PP&YHS2019]

Overview

- Prelude: Low-energy nuclear collective excitations
 - Vibrations (shape oscillations), rotations
 - Deformation, shell structure, clustering, reactions
- On the isoscalar, low-energy dipole (IS-LED) vibration

• The misfit

- Gaps to fill in nuclear data N=Z nuclei
- Summary

Prelude

Low-energy nuclear collective excitations

- Collective model: Vibrations and rotations
- Clustering: Molecule-like vibration+rotation
- What else?

Collective model: Vibrations and rotations

- Nuclei are characterized by collective behavior
- Collectivity is inferred from the electromagnetic transition strength to the ground state
 - cf "single-particle units", or "Weisskopf units" (W.u.); or % of total EWSR
- Collective model: Nuclei as incompressible droplets of nuclear matter with only shape degrees of freedom
 Deformed equilibrium shape. The nucleus can retate
 - Deformed equilibrium shape: The nucleus can rotate
 - Shape oscillations: vibrational modes

Esp. doubly- and singlyclosed shell spherical nuclei open shells

Collective transitions - examples

• Electric quadrupole, B(E2), from the 1st 2⁺ to the ground state

Collective transitions - examples

• Electric octupole, B(E3), from the 1st 3⁻ to the ground state

FIG. 1. (a) Excitation energy, $E_x(S_1)$, of the first 3⁻ state in eveneven nuclides as a function of mass number A (Table I). The open circles correspond to doubtful assignments. The lines connect isotopes. (b) Single particle strength, $|M(E3)|^2$, as a function of mass number A for $0_1^+ \rightarrow 3_1^$ transitions (column 6 of Table VII). Clearly collective in most cases: Transition strength >> 1W.u.

> $|M(E3)|^2 = 2.404 \times 10^6 B(E3) \uparrow / A^2$ W.u. where $B(E3)\uparrow$ is in units of e^2b^3 (Ref. [17]). This expression is based on the assumption that $r_0 = 1.20$ fm.

Rotational bands

• Examples:

 r_4 vs. r_6 for some the most rotational nuclei incl. Cf, Cm, Pu, Dy, Yb, Er, Hf isotopes

Rowe&Wood, "Fundamentals of Nuclear Models" vol.l, World Scientific 2010

Clustering: Vibrations and rotations

Light A=4n nuclei demonstrate alpha clustering^(*) Example

• First 0⁺ of ¹⁶O can be described by 4-body correlations (4p4h)

20,9

16,22

10.36

<u>6,92</u> 6,06

The two bands

in 160°

Generic

heteronolar

Horiuchi&lkeda, Prog.Theor.Phys. 40(1968)277

• An even-parity rotational band is built on it.

- Alpha-oscillation 1- state at 9.58
 - An odd-parity band is built on it-

(*)For heavy nuclei see, e.g., Spieker+, PRL114(2015)192504

Recent approaches

N.Manton

T.Nakatsukas

Q

As shown at APCTP-TRIUMF Workshop, Pohang, Sept. 2018

Edme Mariotte (Newton's cradle)

Museo Galileo

Low-energy dipole vibration? The misfit

• Dipole vibrations cannot be described by the collective model:

The isoscalar dipole operator induces a displacement of the whole nucleus, not an excitation

Dipole $rY_{1\mu}(\hat{r})$

Next in order: $r^{3}Y_{1\mu}(\hat{r})$ can produce intrinsic dipole excitations

• Dipole vibrations cannot be described by the collective model:

The electric dipole operator induces a displacement of the whole nucleus, not an excitation

But not shape oscillations:
 Eg., some degree of compression

• Dipole vibrations cannot be described by the collective model:

The electric dipole operator induces a displacement of the whole nucleus, not an excitation

But not shape oscillations:
 Eg., some degree of compression

Isoscalar, isovector, electric (EL) transitions

- Isoscalar transition operator: $O(IS;L) \propto \sum_{p=1}^{Z} f_L(r_p) Y_L(\hat{r_p}) + \sum_{n=1}^{N} f_L(r_n) Y_L(\hat{r_n}) = \sum_{i=1}^{A} f_L(r_i) Y_L(\hat{r_i})$
- Isovector transition operator: $O(IV;L) \propto \sum_{p=1}^{Z} f_L(r_p) Y_L(\widehat{r_p}) - \sum_{n=1}^{N} f_L(r_n) Y_L(\widehat{r_n})$
- Electric transition operator:

$$O(EL;L) \propto \sum_{p=1}^{r} f_L(r_p) Y_L(\widehat{r_p}) \propto \frac{1}{2} [O(IS;L) + O(IV;L)]$$

* Long-wavelength limit: $f_L(r) = r^L$

Electric vs isoscalar strength: L>1

Electric multipole transition (long-wavelength limit):

$$\langle 0 | \sum_{i=1}^{L} r_i^L Y_L(\widehat{r}_i) | f \rangle$$

• Isoscalar:

$$\langle 0| \sum_{i=1}^{A} r_i^L Y_L(\widehat{r}_i) | f \rangle$$

- For N≈Z, (proton density distribution) $\approx \frac{1}{2} \times (\text{total density distribution}) \Rightarrow$ $B(EL) \approx \frac{1}{4}B(IS; L)$ $E_x B(EL)/EWSR(EL) \approx E_x B(IS; L)/EWSR(IS; L)$
- Therefore (esp. for N ≈ Z), strong B(EL) ↔ strong B(IS;L) (similar information)

Electric vs isoscalar strength: L=1

• Electric dipole operator (long-wavelength limit):

$$\langle 0 | \sum_{i=1}^{\mathbf{Z}} r_i Y_1(\widehat{r}_i) | f \rangle$$

- The matrix element of $\langle 0 | \sum_{i=1}^{A} r_i Y_1(\hat{r}_i) | f \rangle \propto \langle 0 | Z_{CM} | f \rangle$ vanishes! (Translational invariance)
- Isoscalar operator: Next order needed for intrinsic excitations

$$\langle 0 | \sum_{i=1}^{n} r_i^3 Y_1(\widehat{r}_i) | f \rangle$$
$$O(EL; L) \propto \sum_{p=1}^{Z} f_L(r_p) Y_L(\widehat{r}_p) \propto \frac{1}{2} [O(\mathcal{K}L) + O(IV; L)]$$

strong B(EL) 🔆 strong B(IS;L)

Example: Electric response of ²⁰⁸Pb

Example: Electric response of ²⁰⁸Pb

Low-energy dipole response of ⁴⁰Ca, ⁴⁸Ca

Ca40: symmetric – IS and IV decoupled Ca48: mixing What does this mean for 208Pb?

• Aliases:

- N=Z nuclei: "Isospin forbidden E1 transitions"
 - Isospin mixing make its γ-decay possible
 - Early attempts within the shell model failed to account for its decay rate ($1\hbar\omega$ not sufficient)
- N>Z nuclei: "Isoscalar segment of pygmy resonance"
 - Described by RPA (linear response theory)
- "Compressible" oscillations
 - Sum-rule approach, Deal (1973)
 - Harakeh et al. (80's ff): The $1\hbar\omega$ IS dipole resonance
- IS-LED: "Isoscalar low-energy dipole" oscillation

	Energy levels of ${}^{16}O^{a}$)							
$E_{\rm x}$ (MeV±keV)	J [#] ; T	Κ"	$\Gamma_{\rm c.m.}$ or $ au_{\rm m}$ (keV)	Decay				
0	0*;0		stable					
6.0494 ± 1.0	0 ⁺ ;0	0+	$\tau_{\rm m} = 96 \pm 7 \ \rm psec$	π				
6.13043±0.05	3 ⁻ ;0		$\tau_{\rm m} = 26.6 \pm 0.7 \text{ psec}$ $ g = 0.55 \pm 0.03$	7				
6.9171±0.6	2+;0	0+	$ au_{\rm m}$ = 6.6 ± 0.4 fsec	r				
7.11685±0.14	1-;0		$\tau_{\rm m} = 11.6 \pm 1.0$ fsec	7				
8.8719±0.5	2 ⁻ ;0		$\tau_{\rm m}$ = 180 ± 16 fsec	γ, α				
9.632±21 9.847±3	1 ⁻ ;0 2 ⁺ ;0	0-	$\Gamma_{\rm c.m.} = 400 \pm 10$ 0.625 ± 0.100	γ, α γ, α				
10.355±3	4*;0	0+	25±4	γ, α				
10.957 ± 1 11.080 ± 3 11.096 ± 2	0 ⁻ ;0 3 ⁺ ;0 4 ⁺ ;0		$\tau_{\rm m} = 8 \pm 5 {\rm fsec}$ $\Gamma < 12$ 0.28 ± 0.05	γ γ,α				
(11.26) ^b) 11.520±4	(0 ⁺ ; 0) 2 ⁺ ; 0		(2500) 74±4	(α) γ.α				
11 60 4 20	27.0	0-	800 - 100					

Nuclear Physics A375 (1982) 1-168

A universal nuclear phenomenon?

Transition density, form factor:

- Described well by RPA
 - Cf. e-scattering data for O, Ca
- Predicted similar from ¹⁶O to ¹³²Sn

A universal nuclear phenomenon?

- But studies are spotty Gaps to be filled!
 - Mapping along isotopic chains
 - Mapping along N=Z

Data for IS dipole transitions from:

Savran et al., Derya et al., Crespi et al., Poelhekken et al., Harakeh et al

Theoretical investigations:

[PP et al.; EPJA47,PLB709,PRC89,PRC92]: N=Z up to ¹⁰⁰Sn; Ca, Sn, Ni, N=20

Mapping along isotopic chains

- Example: Ca isotopes
 - Smooth evolution from N=20 to 28; then dissolution to neutron modes [PP et al., PLB709, 270]
- Example: Ni isotopes
 - Bimodal structure mid-shell due to coupling with surface neutrons? [PP et al., PRC92, 034311]
- Example: Sn isotopes
 - Smooth evolution from N=50 to 82; then dominance of neutron configurations [PP et al., PRC89,034306]

A universal nuclear phenomenon?

- But studies are spotty Gaps to be filled!
 - Mapping along isotopic chains
 - Mapping along N=Z [PP et al., EPJA47.14]

Data for IS dipole transitions from:

 Savran et al., Derya et al., Crespi et al., Poelhekken et al., Harakeh et al

Theoretical investigations:

Compare situation with:

[PP et al.; EPJA47,PLB709,PRC89,PRC92]:
 N=Z up to ¹⁰⁰Sn; Ca, Sn, Ni, N=20

IS 1⁻ (approximate)

50

Discussion

The IS-LED of N=Z nuclei (and not only...)

Fiure 2: Properties of the IS-LED in closed-shell symmetric nuclei (from [Pap2011]). Black dots are experimental data. Colored points are predictions of various RPA models. Connecting lines are drawn solely to guide the eye.

Information on even-even N=Z nuclei with A=16~56

Basic information on the nuclei under discussion is shown in the following table. The main focus is beyond ⁴⁰Ca.

Energies are given in units of MeV. Blue color marks known collective IS-LEDs. Red color marks other plausible candidates. Other 1- states may belong to different deformed bands and provide complementary structure information.

Nucleus	¹⁶ O	²⁰ Ne	²⁴ Mg	²⁸ Si	³² S	³⁶ Ar	⁴⁰ Ca	⁴⁴ Ti	⁴⁸ Cr	⁵² Fe	⁵⁶ Ni
Half life	stable	stable	stable	stable	stable	stable	stable	51.9(3)Y	21.56(3)h	8.285(8)h	6.075(10)d
E(2 ⁺ ₁)	6.92	1.63	1.37	1.78	2.23	1.97	3.90	1.08	0.75	0.85	2.70
B(E2)[Wu]	3.1	20.3	21.5	13.2	?	8.2	2.26	13	31	14	5.8
E(3 ⁻)	6.13	5.62	7.62	6.88	5.01	4.18	3.74	3.18	4.06?	4.40 7.01	4.93? 7.58
<8 MeV		7.16				5.86	6.28	3.92			
						6.84	6.58	5.06			
						7.26	6.93	5.42			
							7 69	7 34			
€(1 ⁻)	7.12	5.79	7.55	?	5.80	5.84	5.90	3.76	?	6.88	6.01 7.14
<8 MeV					7.43	?	6.95	6.22			(7.25?)
							7.11?	7.50			(7.80?)
B(E1)	350	8.3	3.3	?	?	470	160	44	?		????
[10 ⁻⁶ Wu]		(110 to					1810	?			
		2+)									
Spherical/	S	D	D	D	(S)	D	S	(S)	D	D	D
Deformed											
Purely "toroidal"?											
	t al., PRL120,1	82501+supple	ement]								

Physics Letters B 278 (1992) 423-427

Low-energy isoscalar dipole strength in ⁴⁰Ca, ⁵⁸Ni, ⁹⁰Zr and ²⁰⁸Pb

T.D. Poelhekken, S.K.B. Hesmondhalgh¹, H.J. Hofmann, A. van der Woude Kernfysisch Versneller Instituut, NL-9747 AA Groningen, The Netherlands

and

M.N. Harakeh

Faculteit Natuurkunde en Sterrenkunde, De Boelelaan 1081, NL-1081 HV Amsterdam, The Netherlands

Received 7 January 1991; revised manuscript received 18 November 1991

The $1\hbar\omega$ low-energy isoscalar dipole strength has been studied in ²⁰⁸Pb, ⁹⁰Zr, ⁵⁸Ni and ⁴⁰Ca, using the (α , $\alpha'\gamma_0$) reaction at 0°. The fraction of the isoscalar dipole EWSR exhausted by the observed 1⁻ states in the four nuclei is at maximum 14.7%, 8.0%, 5.0% and 4.3%, respectively.

strength in the excitation energy region of interest. So far information on the existence of $1\hbar\omega$ low-energy isoscalar dipole strength (ISLED, $\eta = 0, 1^-$) in $A \ge 40$ nuclei has been rather scarce. In this letter we present a systematic experimental study of this $1\hbar\omega$ component in $A \ge 40$ nuclei. This is achieved by studying inelastic scattering of α -particles in which the isoscalar dipole cross section is at its maximum at very forward angles. By measuring in coincidence with the inelastically scattered α -particles the γ -decay to a 0^+ ground state, the characteristic $\alpha - \gamma$ angular correlation will allow unique identification of the multipolarity of the excited intermediate states.

The $(\alpha, \alpha' \gamma)$ experiment [5] was performed using a 120 MeV α -particle beam provided by the KVI AVF

Fig. 2. The spectra of the ⁵⁸Ni(α , α') and ⁵⁸Ni(α , $\alpha'\gamma$) reactions at $\theta_{\alpha'} = 0^{\circ}$ and $\theta_{\gamma} = 135^{\circ}$. Note that the singles spectrum is nearly free of any instrumental background.

2.B: 2.L

Nuclear Physics A297 (1978) 10-34; C North-Holland Publishing Co., Amsterdam Not to be reproduced by photoprint or microfilm without written permission from the publisher

ISOSCALAR EXCITATIONS OF ²⁴Mg BY INELASTIC ³He SCATTERING [†]

R. J. PETERSON and F. E. CECIL **

Nuclear Physics Laboratory, Department of Physics and Astrophysics, University of Colorado, Boulder, Colorado 80309, USA

> Received 25 January 1977 (Revised 7 October 1977)

Abstract: The implications of a rotational model for ²⁴Mg are tested by inelastic ³He scattering to almost all the known states below 11.5 MeV. Multiple excitation calculations are compared to the data for members of known or suspected rotational bands, particularly the 5⁻ and 6⁺ states. Three examples of 0⁺ excited states are studied, and a very strong excitation of the $T = 0.1^-$ state at 8.438 is found.

Thank you!

감사합니다~~

