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ABSTRACT

We explore the dominant modes of variability in the observed albedo at the cloud tops of Venus using Akatsuki UVI 283 nm and 365 nm
observations, which are sensitive to SO2 and unknown UV absorber distributions respectively. The observations, taken over the period
Dec. 2016 to May 2018, consist of images of the dayside of Venus, most often observed at intervals of two hours, but interspersed
with longer gaps. The orbit of the spacecraft does not allow for continuous observation of the full dayside and the unobserved regions
cause significant gaps in the datasets. Each dataset is subdivided into three subsets for three observing periods, the unobserved data are
interpolated, and each subset is then subjected to a principal component analysis to find six oscillating patterns in the albedo. Principal
components in all three periods show similar morphologies at 283 nm, but are much more variable at 365 nm. Some spatial patterns
and the timescales of these modes correspond to well-known physical processes in the atmosphere of Venus such as the ~4-day Kelvin
wave, 5-day Rossby waves, and the overturning circulation, while others defy a simple explanation. We also a find a hemispheric mode
that is not well understood and discuss its implications.

Key words. planets and satellites: individual: Venus – planets and satellites: atmospheres – techniques: photometric –
methods: statistical

1. Introduction

The atmosphere of Venus, as seen in ultraviolet wavelengths, is
long known to have striking albedo patterns that are indicative of
the dynamics and chemistry of the upper atmosphere (Ross 1928;
Del Genio & Rossow 1990; Markiewicz et al. 2007). Several of
these features have been identified and named, for instance: the
Y-feature, associated with equatorial Kelvin wave (Del Genio &
Rossow 1990; Peralta et al. 2015); mid-latitude Rossby waves
(Del Genio & Rossow 1990); and the equatorial and polar caps
and bands (Rossow et al. 1980). The main absorbers in the near
UV, SO2 and the unknown UV absorber, seem to vary on mul-
tiple timescales, from daily to multiyear (Encrenaz et al. 2012;
Marcq et al. 2013; Lee et al. 2015) and their generation, destruc-
tion, and advection in the atmospheric flow are responsible for
the albedo patterns.

Approximately 4–5 Earth-day period variations are known to
be related to the atmospheric background flow and short period
Kelvin and Rossby waves (Khatuntsev et al. 2013; Kouyama et al.
2015; Peralta et al. 2015), but not fully understood since the rela-
tionship between the UV albedo contrast and physical quantities
describing the wave field (e.g., temperature, pressure, and veloc-
ity) is not known. The causes for the longer period variability
are uncertain, such as 255 days variability in zonal wind speed
(Kouyama et al. 2013) and ∼270 days in the 365 nm latitudinal
contrast (Lee et al. 2015) and mesospheric SO2 gaseous abun-
dance (Marcq et al. 2013). With sustained observations over a
three-year period now available from the Akatsuki Ultraviolet

? JSPS International Research Fellow.

Imager (UVI) instrument (Nakamura et al. 2016; Yamazaki et al.
2018), we have a long enough baseline of observations to find
the leading modes of oscillation in the albedo along with their
periodicities and associated spatial structures. We use observa-
tions at 283 nm, which are correlated to SO2 abundance above
the clouds (with some absorption by unknown UV absorber
and ozone), and those at 365 nm, which is close to the peak
absorption by the unknown UV absorber. With these data, we
attempt to answer two main questions: first, whether we can
resolve the variable UV patterns into a small number of rec-
ognizable components; and second, what these components can
tell us about the physical processes active in the atmosphere of
Venus.

The next section details the data reduction, including the
handling of missing data and principal component analysis
(PCA). The following section deals with the leading oscilla-
tions that result from the PCA, their physical interpretations,
and the statistical significance of the results against noise. The
final section summarizes the findings and speculates on future
applications of such analyses for Venus climate studies.

2. Data and methods

2.1. Data reduction and normalization

The UVI on Akatsuki has two filters at 283 and 365 nm, which
correspond to the absorption bands of SO2 and the unknown UV
absorber. The field of view (FOV) is 12◦ × 12◦ and can observe
the whole Venus disk except for about eight hours near the peri-
apsis. The imaging area is composed of 1024× 1024 pixels and
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365 nm

283 nm

Fig. 1. Observation times of the 665 and 652 images used in this study for 283 nm (top left) and 365 nm (bottom left), respectively. The windows
consist of 209, 244, and 212 images for 283 nm and 206, 237, and 209 images for 365 nm, respectively. The color of the data point indicates the
fraction of the dayside that was observed in that image. Right: histograms showing the time gaps between successive images. The majority of the
images are taken at intervals of 2 h, but longer intervals are not uncommon.

has an angular resolution of 12× 10−2 degrees per pixel, which
corresponds to spatial resolutions of about 200 m and 86 km
on the cloud top level in the observations from the altitudes of
∼1000 km at the periapsis and 60 Venus radii at the apoapsis
(Yamazaki et al. 2018). We use the Level 3 (L3) 283 nm data
from the UVI, internal release version 20180901. The L3 data
from Akatsuki have observed variables mapped onto a regular
(equi-spaced) longitude-latitude grid. The resolution of the L3
longitude-latitude map is 0.125◦ × 0.125◦ (2880× 1440) grids
for 360◦ longitude and 180◦ latitude (Ogohara et al. 2017). The
orbit of the spacecraft is elliptical with a revolution period of
∼10.5 Earth days, a periapsis altitude of 1000–8000 km, and an
apoapsis altitude of ∼360 000 km (Nakamura et al. 2016). The
data used in this study were taken on the apoapsis side, where
the FOV of UVI can capture the whole Venus disk. Since the
major axis of the orbit is roughly fixed in the inertial coordi-
nate, the observation condition changes with the revolution of
Venus around the Sun. A visualization of the dataset is provided
in Fig. 1.

To identify spatial structures and time series of oscillations,
it is ideal to have continuous observations of the full dayside
at high frequency over a long time period. However, owing to
practical constraints, the fraction of dayside observed varies sys-
tematically and there are often long gaps in the time series.
The majority of observations have a gap of 2 h between them,
though the longest gap between successive observations is about
40 days, which is the time of missing global dayside images due
to the highly elliptical equatorial orbit. Images that cover less
than 80% of the dayside observed are excluded from this anal-
ysis and grid points on a given image where the dayside is not
observed are referred to as missing data points. The dayside is
the region between solar local time 600–1800 h, and the fraction
of the dayside observed is calculated as the ratio of grid points
in this region with observed values to the total number of grid

points on the dayside. The exclusion threshold could be relaxed
to 10−60%, but doing so increased the ratio of missing data to
observed data and introduced too many artificial patterns during
the interpolation process described in Sect. 2.2.2. On the other
hand, as the exclusion threshold increases, the number of images
that can be included in the analysis decrease. As a result, the
statistics become more uncertain and the time baseline shorter,
limiting the longest period oscillation that can be studied. The
80% threshold offers a reasonable balance between these two
competing effects.

We convert the radiances to relative albedos based on the
Minnaert law described in Lee et al. (2017), using Eqs. (8) and
(10) of that paper for 283 and 365 nm, respectively. The albedos
in each observation thus derived are normalized by dividing by
the spatial mean value in each map to give a relative albedo. We
chose to normalize by the spatial mean instead of the commonly
used spatial maximum, since the maximum is very unstable in
fields with a large number of missing values. Alternately, another
stable measure of the top values of the albedo distribution (such
as the 90th percentile) could be used for normalization. We note
that this normalization allows for values of albedo above 1 and
removes trends in albedo with time, but that is not our primary
concern at this time. We are interested in planetary scale pat-
terns in albedo, for which the relative albedos are sufficient.
The maps are then centered such that the subsolar longitude is
always at 180◦ or 1200 local time. This is equivalent to plot-
ting on a local solar time grid. Grid points where the cosines
of the solar zenith angle or the viewer zenith angle are ≤0.2 are
excluded, since the observing error at such points is rather large
compared to natural variability (Fukuhara et al. 2017). The data
are regridded to a 2◦ resolution (using the resize function from
the Python library skimage.transform). The region of inter-
est for our study is the dayside, which we define to be between
800–1600 h local time. The 283 nm dataset contains 665 images,
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each with 4476 grid points on the dayside. Of these 2985492
points, 8% are unobserved (“missing data”). The 365 nm dataset
contains 652 images and has a similar fraction of missing
data.

2.2. Principal component analysis

A powerful dimensionality reduction technique, PCA is widely
used to find oscillations in atmospheric and climate data on Earth
(Wilks 2006). Our PCA follows this procedure:
1. The two-dimensional (latitude longitude grid) images con-

taining relative albedos are flattened into one-dimensional
arrays.

2. A data matrix is created with p variables (here the number
of spatial gridpoints, 4476) as rows and n observations (here
the number of images) as columns. An element xi, j of this
matrix corresponds to the ith gridpoint and jth observation.

3. The time mean (row-wise mean) of each variable is sub-
tracted to generate the anomalies from the mean as follows:

xa
i, j = xi, j −

∑n
j=1 xi, j

n
= xi, j − x̄i. (1)

4. The covariance matrix is calculated with the dimension
p× p. An element of this matrix ck,l is the covariance
between the observations at gridpoints k and l, which is
calculated as

ck,l =

∑n
j=1 xa

k, jx
a
l, j

n − 1
. (2)

5. The eigenvalues and eigenvectors of the covariance matrix
are calculated (we use the eigsh function from the
Python library scipy.sparse.linalg). The eigenvectors
are called the principal components (PCs) or empirical
orthogonal functions (EOFs), which give the spatial struc-
ture of the leading modes of variability. Each PC has a
dimension of p× 1 and there are p PCs in total.

6. The dot product of the mean-removed data with the PCs give
the PC loadings (hereafter referred to as loadings). The load-
ings give the time series of contribution of each mode of
variability to the data, each of which has a shape 1× n, and
there are p loadings in total. The loadings are derived from
the EOFs, ε, and data anomalies, xa as follows:

Lk, j =

n∑
i=1

εk,i . xa
i, j. (3)

7. The original data can be fully reconstructed from the PCs
and loadings thus,

xi, j = x̄i +

p∑
k=1

εk,iLk, j. (4)

The PCs corresponding to the largest few eigenvalues and their
loadings give the spatial patterns and the time series of the lead-
ing oscillations of the dataset, respectively. The fraction of total
data variance explained by each eigenvector is given by the ratio
of its eigenvalue to the sum of all eigenvalues.

2.2.1. Calculation of the covariance matrix

The covariance of albedo values between two pixels (true covari-
ance or population covariance) has to be approximated using
the limited data sample available (sample covariance). However,

the existence of missing data means that the sample covariance
matrix cannot be calculated immediately from the data. The sim-
plest approaches for dealing with missing data in the calculation
of the sample covariance matrix are deletions; that is, removing
variables with missing data points (known as listwise deletion)
or the calculation of covariances by considering only data points
for which data exist for both variables of interest (pairwise dele-
tion) (e.g., Carter 2006; Nakagawa & Freckleton 2008). Listwise
deletion is undesirable, since it discards a grid point entirely even
if that point has missing data at only a single time step. Also,
the use of pairwise deletion introduces undesirable properties
to the sample covariance matrix, such as the existence of neg-
ative eigenvalues. This indicates that the sample covariance is
not a good estimate of the true covariance of the system being
observed and the sample covariance matrix lacks the properties
of a true covariance matrix such as positive semi-definiteness
(only positive or zero eigenvalues) (Pourahmadi 2011). Using
such bad estimates often results in the first few eigenvalues being
biased high. Meanwhile, the existence of negative eigenvalues
makes the calculation of the variance associated with each eigen-
value hard to interpret, since negative variances do not have a
clear physical meaning (Dray & Josse 2015).

A better way to deal with missing values is imputation,
either by interpolation from available data or the imposition of
additional constraints on the structure of the covariance matrix
(regularization). Several different techniques have been pro-
posed to regularize the properties of such ill-conditioned sample
covariance matrices such as ridge regressions/Tikhonov regular-
ization, banding, and tapering (Bickel et al. 2008; Warton 2008).
These methods are primarily focused on eliminating bad behav-
ior in the covariance matrix by introducing constraints such as
smoothness or sparsity, where the constraints may or may not
be determined from the dataset. Other approaches, often used in
climate studies, fill in missing data through various inter-
polations, such as nearest neighbor regressions followed by
smoothing [DCT-PLS] (Garcia 2010; Wang et al. 2012); optimal
interpolation (Burgess & Webster 1980); singular spectral anal-
ysis (Kondrashov & Ghil 2006); or iterative techniques like reg-
ularized estimation maximization [RegEM] (Schneider 2001),
data interpolating empirical orthogonal functions [DINEOF]
(Beckers & Rixen 2003), and several other such variants of PCA
based interpolations (Ilin & Raiko 2010). For our dataset, we
need an interpolation technique that must be able to handle a
large percentage of missing data and continuous data gaps. It
must also be able to interpolate effectively in three dimensions
(as opposed to purely spatial interpolation). The method must
derive the regression parameters from the data itself, i.e., be non-
parametric. Since the missing values lie on a smooth map, there
is a roughness constraint on the interpolated values. This can be
enforced in many ways: creating interpolations using low-order
PC truncations (like DINEOF), ridge regularizing the covariance
matrix (RegEM), or enforcing a roughness penalty by explicitly
specifying a smoothness parameter (DCT-PLS).

Since our ultimate goal is to perform a PCA on this dataset,
two of the above methods, RegEM and DINEOF, iteratively cre-
ate imputed datasets that converge on a set of PCs. But RegEM
uses a 2D spatial-only linear regression that is unsuited for our
data since missing values are primarily located near the edges
of the region of interest rather than in the center; therefore we
use the DINEOF method (Beckers & Rixen 2003). This method
is closely related to other spatiotemporal methods like singular
spectral analysis and optimal interpolation and produces com-
parable results (Allen & Smith 1996; Alvera-Azcárate et al.
2005).

A30, page 3 of 9



A&A 626, A30 (2019)

5 10 15 20

100

101

Ei
ge

nv
al

ue

Window 1

5 10 15 20

Eigenvector Number

100

101

Window 2

5 10 15 20

100

101

Window 3

Fig. 2. Distribution of the 20 largest eigenvalues in the DINEOF interpolated datasets for 283 nm. The 365 nm datasets show similar trends. The red
vertical line shows the point at which the eigenvalue curve has an inflection. The PCs corresponding to eigenvalues left of this line are considered
significant by the Scree test.

2.2.2. Data Interpolating Empirical Orthogonal Functions

The Data Interpolating Empirical Orthogonal Functions
(DINEOF) method is based on the descriptions from Beckers &
Rixen (2003) and Alvera-Azcárate et al. (2005) and is imple-
mented as follows:
1. All missing values in the time-mean subtracted dataset are

filled in with zeros and the covariance matrix is calculated.
2. The PCs, eigenvalues, and loadings of this zero filled covari-

ance matrix are calculated as described in Sect. 2.1.
3. The missing values are imputed using a reconstruction

consisting only of the first leading PC and corresponding
loadings as follows:

xa
i, j = ε1,iL1, j. (5)

4. The imputed dataset is again used to calculate a new covari-
ance matrix and the previous step is repeated to find bet-
ter imputation values. This procedure is iterated until the
imputed values converge. Convergence is defined to occur
when the root mean square difference in imputed albedo val-
ues from two successive iterations differ by less than 10−4 or
10% over three successive iterations, computed as

RMS(n,n−1) ≤ 10−4 or
|RMS(n,n−1) − RMS(n−1,n−2)|

RMS(n−1,n−2)
≤ 0.1,

(6)

where RMS(n,n−1) is the root mean square difference in
imputed values between iterations n and n − 1.

5. The next set of iterations then uses two PCs for the imputa-
tion

xa
i, j = ε1,iL1, j + ε2,iL2, j (7)

and is repeated to convergence.
6. Thus we can arrive at a converged imputed dataset for any

given number of eigenvectors.
Since it is possible to create an imputed dataset with any k
PCs, where 1≤ k≤ p, the optimal number of PCs is determined
through a generalized cross-validation procedure. Following
Alvera-Azcárate et al. (2005), we choose 1% of the existing
data points randomly and set them as artificially missing. This
number of points is often used for cross-validation procedures
(e.g., Wilks 2006). The imputed datasets are reconstructed using
1,2,3 . . . 100 PCs using the convergence criterion above. The
artificially missing data is not included in the convergence calcu-
lation as described in Step 4 above. For each converged imputed

dataset, the root mean square error of the reconstruction of the
artificially missing data is calculated. The optimal imputation is
that for which this RMS error is minimum. For our dataset, this
minimum occurs at N ∼ 25 PCs.

3. Results and discussion

3.1. Dominant modes and statistical significance

The question of how many PCs are significant and should be
retained has been widely discussed, and many different stastical
and rule-of-thumb approaches exist (Jackson 1993; Peres-Neto
et al. 2005; Cangelosi & Goriely 2007). Of these we use a very
simple criterion that looks for an inflection point in the eigen-
value spectrum to find the break between significant and noisy
PCs. This is known as Catell’s Scree test (Cattell 1966) and is
a commonly used heuristic significance metric. From Fig. 2,
we see that our interpolated datasets have an inflection point
around 5 or 6, indicating a dimension of 6. We therefore retain
only the first 6 spatial PCs, and these are shown in Figs. 3
and 5.

The Lomb-Scargle periodograms of the time series corre-
sponding to each PC are shown in Figs. 4 and 6, with a minimum
period of 1 day and a maximum of half the total length of the
window (typically each window is about 40 days). The peri-
odograms show several peaks, but their significance must be
first confirmed. The spectral analyses of atmospheric data are
affected by red noise (e.g., Allen & Smith 1996; Meinke et al.
2005), where the noise contribution increases with period as
opposed to a flat spectrum for white noise. This leads to spurious
long period peaks in periodograms. This noise is usually approx-
imated by an autoregressive process with a time lag of one (AR1)
(Gilman et al. 1963), however irregular time sampling prevents
estimation of the autocorrelation coefficient directly from the
data. We therefore use existing methods in the climate science
literature (Mudelsee 2002; Schulz & Mudelsee 2002) for vari-
able spaced time series data. We do not use the programs made
available by these studies, but only use the methods as described
in the text with some minor modifications. Our implementation
is summarized below:
1. The AR1 process is modeled as

x (t) = x (t − 1) exp
(
−∆t
τ

)
+ ε (8)

where x (t) is the time series value at time t, ∆t = (t)− (t − 1)
is the time step, τ is persistence timescale of the time series,
and ε is the Gaussian noise component.
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Fig. 3. First six modes of variability from the DINEOF interpolated UVI dataset for the three windows at 283 nm. The first row is lined up in order
of the PCs, while the second and third are rearranged so that similar patterns line up in the same column. The first mode shows a pattern similar to
a Hadley circulation, while the second show a hemispheric oscillation. The third, fourth, and fifth columns appear to show a combination of short
period atmospheric waves, while the sixth shows the well known Y-feature.

2. The value τ is estimated by a least-squares fit of the AR1
equation to the loadings (using the function curve_fit
from the Python library scipy). There is one τ for each PC
loading in each window.

3. One thousand artificial time series are generated using the
AR1 process described above; the initial value and the time
steps are the same as the PC loading. The Gaussian process
is taken to have a variance of

σ2 = 1 − exp
(
−2∆t

τ

)
. (9)

4. Each artificial time series is scaled so that the periodogram
has the same area under the curve as the original time series.
The mean, 〈Gam( f )〉, and the standard deviation, 〈Gas( f )〉, of
the set of all the periodograms of the artifical time series are
calculated, where f is the frequency.

5. The analytical expression for the power spectrum in the
periodogram of an AR1 process is given by

G( f ) = Go
1 − ρ2

1 − 2ρ × cos(π f / fmax) + ρ2 , (10)

where fmax is the highest frequency in the periodogram
(often taken to be the Nyquist frequency, but in this
case set to 1 day−1), Go is the mean spectral power, ρ
is the mean autocorrelation coefficient calculated as ρ =
exp(−∆tmean/τ), where ∆tmean is the arithmetic mean of the
time steps in the time series.

6. Correction factors are calculated for the deviations of the
mean artificial periodogram from the analytical value

c( f ) =< Gam( f ) > /G( f ). (11)

These correction factors account for biases resulting from
taking periodograms of irregularly spaced data.

7. The unbiased periodogram of the original series is calculated
as Gts( f )/c( f ), where Gts( f ) is the power spectrum of the
original time series. The standard deviation is scaled simi-
larly and plotted in Fig. 4. Assuming a Gaussian distribution,
the 95% confidence level is taken to be two standard devia-
tions from the mean. The periods of the significant peaks are
labeled.

The results are shown in Figs. 4 and 6.

3.2. Physical interpretations of the oscillations at 283 nm

The first column in Fig. 3 shows a (roughly) longitudinally uni-
form latitudinal gradient from the equator to the poles. This
likely reflects the Hadley circulation, which lifts SO2 from the
lower atmosphere to the cloud tops at the equator from which
it is advected to the poles while being lost to photodissocia-
tion and conversion to sulfuric acid (Marcq et al. 2013) and
polysulfur (Mills et al. 2007). The corresponding periodicities
in Fig. 4 show a major periodicity of around 10 days, which
is likely due to the spacecraft orbital period (Nakamura et al.
2016). The synchronization with the orbital motion might indi-
cate a solar-locked component, i.e., a contribution of thermal
tides. The approximately 4-day period can be attributed to the
atmospheric rotation around the planet, and the 8-day peak is
probably a subharmonic of this period. However, GCM stud-
ies indicate the existence of barotropic or baroclinic waves with
periods ranging from 6 to 23 days (Lebonnois et al. 2016) in the
cloud layer, which is another possibility for the 8-day signature.
An ∼8-day period wave was observed a little deeper than the
cloud top level in near-infrared observations (∼1.7 µm) and is
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Fig. 4. Lomb-Scargle periodograms for the loadings corresponding to the first six PCs for three windows at 283 nm. The numbers given for the
spectral peaks indicate the associated periods. The solid red line is the average spectral power of red noise, while the dotted red line shows the
95% confidence limit of the distribution from 1000 Monte Carlo AR1 red noise processes. The explained variance fraction listed in the title of each
subplot is calculated as the ratio of the eigenvalue of the mode to the sum of all eigenvalues from the covariance matrix, expressed as a percentage.

also thought to result from the interaction of Kelvin and Rossby
waves with the mean flow (Hosouchi et al. 2012).

The second column shows a pattern broadly described as a
hemispheric oscillation, showing an oscillation with opposite
directions of change between the two polar regions. A polar
asymmetric brightening or darkening was observed by a ground-
based telescope (Dollfus 1975), and it was thought to be caused
by polar clouds independently evolving in either hemisphere.
The pattern identified in this work is somewhat different in that
the two hemispheres do not evolve independently; rather they
evolve together in opposite directions, that is, one brightens
while the other darkens. Notably, Fig. 4 shows no significant
periods associated with this pattern other than the spacecraft
orbital period. This can mean either that the phenomenon is
aperiodic, or more likely, that the period is longer than the
observational window considered in this work (approximately
40 days). Such a large scale pole-to-pole pattern could indicate
the existence of an atmospheric teleconnection. Another inter-
pretation might be that the period comparable to the spacecraft
orbit might indicate a contribution of asymmetric components
of thermal tides. Alternatively, this pattern may also arise from
the non-equatorially symmetric component of the meridional
circulation. However, further observations are required for con-
firmation, as completely symmetric polar features were observed
from the mid-infrared ground-based observations (Sato et al.
2014). A very recent study of IR1 (900-nm) images from Akat-
suki revealed an asymmetric pattern in the middle clouds at low
latitudes with a periodicity of 4–5 days (Peralta et al. 2018). It is
unclear at this time if this IR pattern is directly related the hemi-
spheric mode we find at the cloud tops. Analysis of mid-infrared
images (Longwave InfraRed Camera of Akatsuki; Fukuhara
et al. 2011) from the same time period as the UV images studied

in this work, using PCA, may confirm this oscillation and offer
clues to robust physical interpretations in near future. Notable
hemispheric dichotomies have also been observed in CO concen-
trations below the clouds (Arney et al. 2014; Marcq et al. 2006,
2008). Higher concentrations were found to variably occur either
on the northern and southern hemispheres during observations
separated by several months. SO2 hemispheric dichotomies were
also studied, but an unambiguous detection was only made once
in 2010. It is unclear at this time how these long-term variations
are related to the short-term mode we find.

We interpret the third, fourth, and fifth columns to be
combinations of atmospheric wave patterns. They often show
short-period variabilities of approximately 5 days. Waves with
periods of a few days have been observed (Del Genio & Rossow
1990; Kouyama et al. 2015; Imai et al. 2016) and simulated in
Venus GCM models (Yamamoto & Takahashi 2006). In partic-
ular, the 5-day wave has been interpreted as a Rossby wave and
the 4-day wave as an equatorial Kelvin wave (Rossow et al. 1990;
Kouyama et al. 2012; Imamura 2006). It must also be noted that
several subplots do not show any notable periodicity even similar
spatial patterns are associated with waves in other windows. For
example, in column three, row one shows no periodicity except
for the spacecraft orbit and some high frequency noise around
the 1–2 day range. But rows two and three clearly show 5- and
4-day periods, respectively. It is interesting that similar spatial
patterns appear to form from different wave configurations in
different periods.

The sixth column clearly shows the famous Y-feature
(Boyer & Camichel 1961; Rossow et al. 1980), and is clearly
associated with a strong periodicity of about four days. This is
also consistent with the interpretation of the major cloud fea-
tures of the Venus atmosphere interpreted as a trapped Kelvin

A30, page 6 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935388&pdf_id=0


P. Kopparla et al.: Venus albedo components

Latitudinal 
Contrast

Hemispheric 
Asymmetry

Midlatitude 
Bands

Y Feature

Fig. 5. Same as Fig. 3 but for 365 nm. The patterns are much more variable between the windows, but can still be broadly classified into four
groups. The first mode shows a pattern similar to a Hadley circulation, while the second shows a hemispheric oscillation. The third and fourth
groups show signatures of the midlatitude Rossby waves and Y-feature, respectively. Not all groups are represented in all windows.

wave (Del Genio & Rossow 1990; Kouyama et al. 2012; Peralta
et al. 2015). It is interesting that the order of PCs in each win-
dow is slightly variable and needs rearrangement to align similar
patterns under each column. This indicates that different pro-
cesses dominate albedo variability in different periods, which
is consistent with the previous finding that the dominant peri-
odicity of atmospheric waves in the Venus atmosphere varies
on a timescale of several months (Del Genio & Rossow 1990;
Kouyama et al. 2013; Imai et al. 2016).

A joint PCA of data in all windows combined together was
also attempted. The periodograms of that study were domi-
nated by peaks at about 220 days and its harmonics at 110,
55 days and so on, which are functions of the changing orbital
orientation of the spacecraft relative to the Venus dayside, the
observational window frequency, and other factors rather than
interesting atmospheric phenomenon. Also, the dominance of
these observational periodicities in the data caused peaks from
the 4- and 5-day waves to become statistically insignificant. As
such, results from that analysis are not discussed in this paper
since they are dominated by systematics.

3.3. Physical interpretations of the oscillations at 365 nm

The 365 nm PCs are comparatively much more variable across
the three windows than the 283 nm PCs as shown in Fig. 5.
However, they can still be approximately classified into a few
broad categories. Two PCs in each window can be placed into
the first category, which is similar to the latitudinal gradients
seen at 283 nm. The periodicities, as seen in Fig. 6, are also sim-
ilar to those seen at 283 nm. This is generally consistent with
the understanding that the overturning circulation is responsible
for increased UV absorber concentrations leading to low albe-
dos at the equator at 365 nm (Titov et al. 2008; Molaverdikhani
et al. 2012). However, latitudinal gradients are much weaker
than those seen at 283 nm, suggesting that choatic variability in

morphology is perhaps more important at this wavelength. Spa-
tial distributions are in general far more complicated at 365 nm
and have significant ambiguities in classification. This can be
understood on the condition that the 365 nm observations are
sensing an altitude level slightly below the cloud top, while
283 nm is at a higher altitude (Horinouchi et al. 2018). There-
fore, the 365 nm features are affected by both the absorber and
bright sulfuric acid cloud aerosols, which are formed through
photochemical process (Mills et al. 2007; Parkinson et al. 2015),
whereas the 283 nm would reveal the absorbers above the
clouds so atmospheric flow patterns are more apparent. The lat-
ter would be also affected by photodissociation of SO2 (Mills
et al. 2007) and the upper haze (Luginin et al. 2016), but our
results suggest that these influences may be less effective than
at 365 nm.

The second category is the hemispheric asymmetry, which
is represented by two PCs each in the first two windows, but
appears to be absent in the third. In window 3 PC 3 shows some-
thing like a hemispheric mode, however it is associated with a
strong wave peak of around 4 days in Fig. 6, which is char-
acteristic of the Y-feature. Window 3, PC 4 may also qualify
for this category, but is somewhat ambiguous because the pat-
tern is not purely hemispheric. The hemispheric mode typically
does not show any strong periodicities apart from the spacecraft
orbital period, as seen at 283 nm, although hints of the 4- and
5-day periods are seen when the asymmetry is strong (window 1,
PC 5, and window 2, PC 6). The large variability between win-
dows could be attributed to concealment of gradients by transient
cloud features, as for the previous category.

The third category shows a very clear transition region
around 50◦ N/S, from dark low-to-middle latitudes to the bright
polar hood (Titov et al. 2012), which is sometimes symmet-
ric across both hemispheres. The structure is associated with
drastic changes in cloud tracked 365 nm winds, which slow
down poleward of about 50◦ (Kouyama et al. 2012) in cloud top
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Fig. 6. Same as Fig. 4 but for 365 nm.

altitudes and also decrease poleward (Ignatiev et al. 2009), and
in thermal structure, which present colder temperatures near the
cloud top level (Tellmann et al. 2009). This means that winds,
cloud top structure, and thermal structure are closely linked with
the 365 nm patterns, implying overlapped vertical locations each
other. The morphology bears a resemblance to model simula-
tions of Rossby wave patterns at the cloud top (Kouyama et al.
2015). The periodicities always show a peak at around the 5-day
mark confirming the signature of midlatitude Rossby waves. This
can be interpreted as features arising from the perturbation of the
midlatitude bright bands or the “cold collar” (Titov et al. 2008,
2012) by Rossby waves. Interestingly, such a clear Rossby wave
signature is not apparent in the 283 nm data.

The fourth category is the Y-feature, associated with a period
of ∼4 days with some other waves occasionally contributing at
4.5, 9, and 12.3 days. The absence of the Y-feature in window
2 does not mean that this feature did not occur during this time,
since it is clearly seen at 283 nm for the same window. It maybe
that the feature was sufficiently obscured at 365 nm that it is not
represented in the first six PCs considered in this work.

4. Conclusions

We performed a PCA of the Akatsuki UVI 283 nm and 365 nm
data taken over about 1.5 yr, subdivided into three observational
windows each. The first six PCs over each window are consid-
ered significant and show similar morphologies at 283 nm, but
are more variable at 365 nm. The difference can be understood
if the 365 nm observations are sensitive to altitudes below the
cloud top that are affected by transient cloud variability, while
283 nm probes the atmosphere above the cloud tops. Addition-
ally, since the unknown UV absorber is the result of unidentified
chemical reaction chains, the kinetics of those reactions may also
be responsible for some of the observed differences. The signa-
tures of the overturning circulation, Rossby, and Kelvin waves

are apparent from the spatial patterns and associated periodic-
ities. We also note that similar spatial patterns are sometimes
associated with different waves and the relative importance of
different waves changes across the different observing peri-
ods as seen by the changing order of PCs with similar spatial
patterns.

A hemispheric asymmetry mode is also apparent from this
analysis. To be sure of its existence and to understand its dynam-
ics, the same mode will need to be studied in other atmospheric
observations of Venus. The analysis technique described in this
work is general, has potential for use in other gridded atmo-
spheric datasets from Akatsuki, Venus Express, and Pioneer
Venus, and can be applied to other planetary atmospheric image
analysis with a long-term monitoring dataset.

Acknowledgements. We thank Takehiko Satoh and the anonymous referee for
comments that improved the paper. PK acknowledges generous funding support
from the grants-in-aid program of JSPS. Codes used in this study are available
on request and Akatsuki data are publicly available at https://darts.isas.
jaxa.jp/pub/pds3/staging/.

References
Allen, M. R., & Smith, L. A. 1996, J. Clim., 9, 3373
Alvera-Azcárate, A., Barth, A., Rixen, M., & Beckers, J.-M. 2005, Ocean

Model., 9, 325
Arney, G., Meadows, V., Crisp, D., et al. 2014, J. Geophys. Res. Planets, 119,

1860
Beckers, J.-M., & Rixen, M. 2003, J. Atm. Ocean Technol., 20, 1839
Bickel, P. J., & Levina, E. 2008, Ann. Stat., 36, 199
Boyer, C., & Camichel, H. 1961, Ann. Astrophys., 24, 531
Burgess, T. M., & Webster, R. 1980, J. Soil Sci., 31, 315
Cangelosi, R., & Goriely, A. 2007, Biol. Direct, 2, 2
Carter, R. L. 2006, Res. Pract. Assess., 1, 4
Cattell, R. B. 1966, Multivariate Behav. Res., 1, 245
Del Genio, A. D., & Rossow, W. B. 1990, J. Atm. Sci., 47, 293
Dollfus, A. 1975, J. Atm. Sci., 32, 1060
Dray, S., & Josse, J. 2015, Plant Ecol., 216, 657
Encrenaz, T., Greathouse, T., Roe, H., et al. 2012, A&A, 543, A153

A30, page 8 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935388&pdf_id=0
https://darts.isas.jaxa.jp/pub/pds3/staging/
https://darts.isas.jaxa.jp/pub/pds3/staging/
http://linker.aanda.org/10.1051/0004-6361/201935388/1
http://linker.aanda.org/10.1051/0004-6361/201935388/2
http://linker.aanda.org/10.1051/0004-6361/201935388/2
http://linker.aanda.org/10.1051/0004-6361/201935388/3
http://linker.aanda.org/10.1051/0004-6361/201935388/3
http://linker.aanda.org/10.1051/0004-6361/201935388/4
http://linker.aanda.org/10.1051/0004-6361/201935388/5
http://linker.aanda.org/10.1051/0004-6361/201935388/6
http://linker.aanda.org/10.1051/0004-6361/201935388/7
http://linker.aanda.org/10.1051/0004-6361/201935388/8
http://linker.aanda.org/10.1051/0004-6361/201935388/9
http://linker.aanda.org/10.1051/0004-6361/201935388/10
http://linker.aanda.org/10.1051/0004-6361/201935388/11
http://linker.aanda.org/10.1051/0004-6361/201935388/12
http://linker.aanda.org/10.1051/0004-6361/201935388/13
http://linker.aanda.org/10.1051/0004-6361/201935388/14


P. Kopparla et al.: Venus albedo components

Fukuhara, T., Taguchi, M., Imamura, T., et al. 2011, Earth Planets Space, 63,
1009

Fukuhara, T., Futaguchi, M., Hashimoto, G. L., et al. 2017, Nat. Geosci., 10, 85
Garcia, D. 2010, Comput. Stat. Data Anal., 54, 1167
Gilman, D. L., Fuglister, F. J., & Mitchell, Jr J. M. 1963, J. Atm. Sci., 20, 182
Horinouchi, T., Kouyama, T., Lee, Y. J., et al. 2018, Earth Planets Space, 70, 10
Hosouchi, M., Kouyama, T., Iwagami, N., Ohtsuki, S., & Takagi, M. 2012, Icarus,

220, 552
Ignatiev, N., Titov, D., Piccioni, G., et al. 2009, J. Geophys. Res. Planets, 114
Ilin, A., & Raiko, T. 2010, J. Mach. Learn. Res., 11, 1957
Imai, M., Takahashi, Y., Watanabe, M., et al. 2016, Icarus, 278, 204
Imamura, T. 2006, J. Atm. Sci., 63, 1623
Jackson, D. A. 1993, Ecology, 74, 2204
Khatuntsev, I., Patsaeva, M., Titov, D., et al. 2013, Icarus, 226, 140
Kondrashov, D., & Ghil, M. 2006, Nonlinear Process. Geophys., 13, 151
Kouyama, T., Imamura, T., Nakamura, M., Satoh, T., & Futaana, Y. 2012, Planet.

Space Sci., 60, 207
Kouyama, T., Imamura, T., Nakamura, M., Satoh, T., & Futaana, Y. 2013, J.

Geophys. Res. Planets, 118, 37
Kouyama, T., Imamura, T., Nakamura, M., Satoh, T., & Futaana, Y. 2015, Icarus,

248, 560
Lebonnois, S., Sugimoto, N., & Gilli, G. 2016, Icarus, 278, 38
Lee, Y., Imamura, T., Schröder, S., & Marcq, E. 2015, Icarus, 253, 1
Lee, Y., Yamazaki, A., Imamura, T., et al. 2017, AJ, 154, 44
Luginin, M., Fedorova, A., Belyaev, D., et al. 2016, Icarus, 277, 154
Marcq, E., Encrenaz, T., Bézard, B., & Birlan, M. 2006, Planet. Space Sci., 54,

1360
Marcq, E., Bézard, B., Drossart, P., et al. 2008, J. Geophys. Res. Planets, 113
Marcq, E., Bertaux, J.-L., Montmessin, F., & Belyaev, D. 2013, Nat. Geo., 6, 25
Markiewicz, W., Titov, D., Limaye, S., et al. 2007, Nature, 450, 633
Meinke, H., DeVoil, P., Hammer, G. L., et al. 2005, J. Clim., 18, 89
Mills, F. P., Esposito, L. W., & Yung, Y. L. 2007, Geophysical Monograph Series

(Washington: AGU Publications)

Molaverdikhani, K., McGouldrick, K., & Esposito, L. W. 2012, Icarus, 217,
648

Mudelsee, M. 2002, Comput. Geosci., 28, 69
Nakagawa, S., & Freckleton, R. P. 2008, Trends Ecol. Evol., 23, 592
Nakamura, M., Imamura, T., Ishii, N., et al. 2016, Earth Planets Space, 68, 75
Ogohara, K., Takagi, M., Murakami, S.-y., et al. 2017, Earth Planets Space, 69,

167
Parkinson, C. D., Gao, P., Schulte, R., et al. 2015, Planet. Space Sci., 113, 205
Peralta, J., Sánchez-Lavega, A., López-Valverde, M., Luz, D., & Machado, P.

2015, Geophys. Res. Lett., 42, 705
Peralta, J., Iwagami, N., Sánchez-Lavega, A., et al. 2018, Geophys. Res. Lett.,

46, 1
Peres-Neto, P. R., Jackson, D. A., & Somers, K. M. 2005, Comput. Stat. Data

Anal., 49, 974
Pourahmadi, M. 2011, Stat. Sci., 369
Ross, F. E. 1928, AJ, 68, 57
Rossow, W. B., Del Genio, A. D., Limaye, S. S., Travis, L. D., & Stone, P. H.

1980, J. Geophys. Res. Space Phys., 85, 8107
Rossow, W. B., Del Genio, A. D., & Eichler, T. 1990, J. Atm. Sci., 47, 2053
Sato, T. M., Sagawa, H., Kouyama, T., et al. 2014, Icarus, 243, 386
Schneider, T. 2001, J. Clim., 14, 853
Schulz, M., & Mudelsee, M. 2002, Comput. Geosci., 28, 421
Tellmann, S., Pätzold, M., Häusler, B., Bird, M. K., & Tyler, G. L. 2009, J.

Geophys. Res. Planets, 114
Titov, D. V., Taylor, F. W., Svedhem, H., et al. 2008, Nature, 456, 620
Titov, D. V., Markiewicz, W. J., Ignatiev, N. I., et al. 2012, Icarus, 217, 682
Wang, G., Garcia, D., Liu, Y., De Jeu, R., & Dolman, A. J. 2012, Environ. Model.

Softw., 30, 139
Warton, D. I. 2008, J. Am. Stat. Assoc., 103, 340
Wilks, D. S. 2006, Statistical Methods in the Atmospheric Sciences, Interna-

tional Geophysics Series (Cambridge: Academic Press), 91
Yamamoto, M., & Takahashi, M. 2006, J. Atm. Sci., 63, 3296
Yamazaki, A., Yamada, M., Lee, Y. J., et al. 2018, Earth Planets Space, 70, 23

A30, page 9 of 9

http://linker.aanda.org/10.1051/0004-6361/201935388/15
http://linker.aanda.org/10.1051/0004-6361/201935388/15
http://linker.aanda.org/10.1051/0004-6361/201935388/16
http://linker.aanda.org/10.1051/0004-6361/201935388/17
http://linker.aanda.org/10.1051/0004-6361/201935388/18
http://linker.aanda.org/10.1051/0004-6361/201935388/19
http://linker.aanda.org/10.1051/0004-6361/201935388/20
http://linker.aanda.org/10.1051/0004-6361/201935388/20
http://linker.aanda.org/10.1051/0004-6361/201935388/21
http://linker.aanda.org/10.1051/0004-6361/201935388/22
http://linker.aanda.org/10.1051/0004-6361/201935388/23
http://linker.aanda.org/10.1051/0004-6361/201935388/24
http://linker.aanda.org/10.1051/0004-6361/201935388/25
http://linker.aanda.org/10.1051/0004-6361/201935388/26
http://linker.aanda.org/10.1051/0004-6361/201935388/27
http://linker.aanda.org/10.1051/0004-6361/201935388/28
http://linker.aanda.org/10.1051/0004-6361/201935388/28
http://linker.aanda.org/10.1051/0004-6361/201935388/29
http://linker.aanda.org/10.1051/0004-6361/201935388/29
http://linker.aanda.org/10.1051/0004-6361/201935388/30
http://linker.aanda.org/10.1051/0004-6361/201935388/30
http://linker.aanda.org/10.1051/0004-6361/201935388/31
http://linker.aanda.org/10.1051/0004-6361/201935388/32
http://linker.aanda.org/10.1051/0004-6361/201935388/33
http://linker.aanda.org/10.1051/0004-6361/201935388/34
http://linker.aanda.org/10.1051/0004-6361/201935388/35
http://linker.aanda.org/10.1051/0004-6361/201935388/35
http://linker.aanda.org/10.1051/0004-6361/201935388/36
http://linker.aanda.org/10.1051/0004-6361/201935388/37
http://linker.aanda.org/10.1051/0004-6361/201935388/38
http://linker.aanda.org/10.1051/0004-6361/201935388/39
http://linker.aanda.org/10.1051/0004-6361/201935388/40
http://linker.aanda.org/10.1051/0004-6361/201935388/41
http://linker.aanda.org/10.1051/0004-6361/201935388/41
http://linker.aanda.org/10.1051/0004-6361/201935388/42
http://linker.aanda.org/10.1051/0004-6361/201935388/43
http://linker.aanda.org/10.1051/0004-6361/201935388/44
http://linker.aanda.org/10.1051/0004-6361/201935388/45
http://linker.aanda.org/10.1051/0004-6361/201935388/45
http://linker.aanda.org/10.1051/0004-6361/201935388/46
http://linker.aanda.org/10.1051/0004-6361/201935388/47
http://linker.aanda.org/10.1051/0004-6361/201935388/48
http://linker.aanda.org/10.1051/0004-6361/201935388/48
http://linker.aanda.org/10.1051/0004-6361/201935388/49
http://linker.aanda.org/10.1051/0004-6361/201935388/49
http://linker.aanda.org/10.1051/0004-6361/201935388/50
http://linker.aanda.org/10.1051/0004-6361/201935388/51
http://linker.aanda.org/10.1051/0004-6361/201935388/52
http://linker.aanda.org/10.1051/0004-6361/201935388/53
http://linker.aanda.org/10.1051/0004-6361/201935388/54
http://linker.aanda.org/10.1051/0004-6361/201935388/55
http://linker.aanda.org/10.1051/0004-6361/201935388/56
http://linker.aanda.org/10.1051/0004-6361/201935388/57
http://linker.aanda.org/10.1051/0004-6361/201935388/57
http://linker.aanda.org/10.1051/0004-6361/201935388/58
http://linker.aanda.org/10.1051/0004-6361/201935388/59
http://linker.aanda.org/10.1051/0004-6361/201935388/60
http://linker.aanda.org/10.1051/0004-6361/201935388/60
http://linker.aanda.org/10.1051/0004-6361/201935388/61
http://linker.aanda.org/10.1051/0004-6361/201935388/62
http://linker.aanda.org/10.1051/0004-6361/201935388/63
http://linker.aanda.org/10.1051/0004-6361/201935388/64

	Principal components of short-term variability in the ultraviolet albedo of Venus
	1 Introduction
	2 Data and methods
	2.1 Data reduction and normalization
	2.2 Principal component analysis
	2.2.1 Calculation of the covariance matrix
	2.2.2 Data Interpolating Empirical Orthogonal Functions


	3 Results and discussion
	3.1 Dominant modes and statistical significance
	3.2 Physical interpretations of the oscillations at 283 nm
	3.3 Physical interpretations of the oscillations at 365 nm

	4 Conclusions
	Acknowledgements
	References


