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It is clear that humans can extract statistical information from streams of visual input, yet how our brain processes sequen-
tial images into the abstract representation of the mean feature value remains poorly explored. Using multivariate pattern
analyses of electroencephalography recorded while human observers viewed 10 sequentially presented Gabors of different ori-
entations to estimate their mean orientation at the end, we investigated sequential averaging mechanism by tracking the
quality of individual and mean orientation as a function of sequential position. Critically, we varied the sequential variance
of Gabor orientations to understand the neural basis of perceptual mean errors occurring during a sequential averaging task.
We found that the mean-orientation representation emerged at specific delays from each sequential stimulus onset and
became increasingly accurate as additional Gabors were viewed. Especially in frontocentral electrodes, the neural representa-
tion of mean orientation improved more rapidly and to a greater degree in less volatile environments, whereas individual ori-
entation information was encoded precisely regardless of environmental volatility. The computational analysis of behavioral
data also showed that perceptual mean errors arise from the cumulative construction of the mean orientation rather than the
low-level encoding of individual stimulus orientation. Thus, our findings provide neural mechanisms to differentially accumu-
late increasingly abstract features from a concrete piece of information across the cortical hierarchy depending on environ-
mental volatility.

Key words: electroencephalography; multivariate pattern analysis; sequential perceptual averaging; summary statistical
representation

Significance Statement

The visual system extracts behaviorally relevant summary statistical representation by exploiting statistical regularity of the
visual stream over time. However, how the neural representation of the abstract mean feature value develops in a temporally
changing environment remains poorly identified. Here, we directly recover the mean orientation information of sequentially
delivered Gabor stimuli with different orientations as a function of their positions in time. The mean orientation representa-
tion, which is regularly updated, becomes increasingly accurate with increasing sequential position especially in the frontocen-
tral region. Further, perceptual mean errors arise from the cumulative process rather than the low-level stimulus encoding.
Overall, our study reveals a role of higher cortical areas in integrating stimulus-specific information into increasingly abstract
task-oriented information.

Introduction
Understanding how humans effectively interact with the dynamic
and complex sensory environment is of central importance in the
behavioral, cognitive, and neural sciences. Growing evidence shows
that the perceptual system extracts behaviorally relevant informa-
tion from complex dynamic sensory signals by summarizing them
with their central tendency—the mean—through the exploitation of
statistical regularities of sensory data over space (Chong and
Treisman, 2005; Greenwood et al., 2009; Alvarez, 2011; de Gardelle
and Summerfield, 2011; Whitney and Yamanashi Leib, 2018) or
time (Haberman et al., 2009; Albrecht et al., 2012; Piazza et al.,
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2013; Gorea et al., 2014; Hubert-Wallander and Boynton, 2015).
How does the perceptual system compute the mean of sensory fea-
tures and construct an abstract representation? Although much is
known about spatial averaging (e.g., via progressively larger recep-
tive fields in the visual system; Dumoulin and Wandell, 2008;
Freeman and Simoncelli, 2011), less is known about temporal aver-
aging (Navajas et al., 2017; McWalter and McDermott, 2018).
Particularly, the neural mechanism of sequential perceptual averag-
ing is not well defined. Although neuroimaging studies have shown
that the brain simultaneously represents multiple successive images
and their changes at each instant (Marti and Dehaene, 2017; King
and Wyart, 2019), it is unclear how the abstract representation of
the mean feature value develops in this changing visual stream.

Extracting temporally stable information, such as temporal
feature averages from dynamic sensory environments, helps
optimize behavior by allowing the structure of the environment
to be robustly grasped. Integration plays a fundamental role in
this process (Navajas et al., 2017; McWalter and McDermott,
2018), but it is unclear whether the mean feature value is updated
after each stimulus or multiple stimuli when stimuli are serially
delivered. Additionally, it has been established that the precision
of the extracted mean is not perfect and declines with increasing
feature variability (Dakin, 1999; de Gardelle and Mamassian,
2015; Haberman et al., 2015; Navajas et al., 2017; McWalter and
McDermott, 2018). What are the causes of this error when estimat-
ing the mean of a stimulus sequence? Does the error occur at the
stage of encoding individual visual images or at the stage of integrat-
ing these continuously changing features over time? Does environ-
mental volatility influence the low-level representation of individual
visual images, the cumulative construction of the mean feature
value, or both? To address these questions, we explored the dynam-
ics of the sequential perceptual averaging using multivariate pattern
analyses of electroencephalography (EEG) signals recorded from
human observers while they estimated the mean orientation of 10
randomly oriented Gabor patches sequentially presented at the
fovea. By using an inverted encoding model (IEM; Brouwer and
Heeger, 2009; Garcia et al., 2013; Myers et al., 2015; Foster et al.,
2017), we were able to investigate how individuals and their mean
orientations were represented in multivariate EEG activity during
the sequential averaging task. By manipulating the variance of the
10 Gabor orientations, we monitored how the neural representa-
tions of individual orientations and their means were modulated as
a function of environmental volatility. The sequential averaging task
encouraged observers to update the mean orientation on presenta-
tion of each Gabor stimulus. The multivariate EEG pattern analyses
enabled us to assess the contributions of individual stimuli to per-
ceived mean orientation. By estimating how the individual stimuli
were weighted into the mean orientation, we probed the neural
mechanisms of estimating the mean orientation.

We found that both individual and mean orientations were
represented in the dynamically evolving multivariate EEG activ-
ities. Second, the representation of the mean orientation emerged
at specific delays after each Gabor onset, and its accuracy
increased gradually toward the end of the sequence especially in
the frontocentral region. For sequences of high orientation var-
iance, however, the weighting of the later sequential stimuli was
decreased, which may account for poor behavioral performance
of perceptual mean estimation.

Materials and Methods
Observers. Twenty-four human observers (9 females, 15 males) par-

ticipated in this study. Two participants were excluded from the analysis

because of excessive eye movements. All observers had normal or cor-
rected-to-normal visual acuity, gave informed written consent to partici-
pate as paid volunteers, and were tested individually in a dark room. The
study was approved by the Institutional Review Board of the Korea
National Institute for Bioethics Policy.

Stimulus. Visual stimuli were generated and presented using
Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) along with custom
scripts written in MATLAB (MathWorks). The 19-inch display CRT
monitor (ViewSonic PF817) was set to a refresh rate of 100Hz and a re-
solution of 800 � 600 pixels. The CRT monitor gamma tables were
adjusted to ensure response linearity and a constant mean luminance of
59 cd/m2. Participants viewed the stimuli from a distance of 70 cm in a
darkened room.

Each trial consisted of a sequence of 10 randomly oriented Gabor
patches, presented centrally for 100ms, with an interstimulus interval of
500ms to give observers enough time to encode and integrate sensory
information across time. The orientation of each Gabor patch was one
of 40 possible evenly spaced angles spanning 180°. Each sequence was
preceded and followed by a blank period. All Gabor patches had identi-
cal parameters (contrast, 50%; diameter, 8° visual angle; spatial fre-
quency, 1.25 cycles/degree, Gaussian envelope SD, 2° visual angle),
except for their orientation.

Experimental procedure. The observer initiated each trial by pressing
the space button. A central fixation cue appeared for 500ms. During the
subsequent 6 s, observers viewed a sequence of 10 tilted Gabor patches
against a midgray background, followed by a blank period of 700ms
(Fig. 1a). During this entire period, observers were instructed to main-
tain fixation on the center of the screen and attempt to withhold eye-
blinks. After the sequence, a circularly bounded red probe bar appeared
in the center of the screen. The observers’ task was to estimate the mean
orientation of 10 Gabor patches by rotating the red probe bar counter-
clockwise or clockwise using the left- or right-arrow key and pressing
the down-arrow key when the adjusted orientation seemed to match the
mean orientation. The probe display remained until the observers
responded.

For experiments, there were 16 trial types: eight mean orientations
(11.25°, 33.75°, 56.25°, 78.75°, 101.25°, 123.75°, 146.25°, and 168.75°) and
two variances. There were two experimental conditions that differed in
the orientation variance of the sequence. For the low-variance condition,
the sequence comprised64.5°-, 69°-, 613.5°-, 618°-, and622.5°-ori-
ented Gabor patches relative to the mean orientation. For the high-var-
iance condition, the sequence consisted of 69°-, 618°-, 627°-, 636°-,
and645°-oriented Gabor patches relative to the mean orientation. Ten
orientations of every sequence were randomly shuffled to define the pre-
sentation order. Eight possible mean orientations were used for both
conditions. The Gabor patch with the mean orientation of the sequence
never appeared in the stream of 10 Gabor patches. Because this manipu-
lation of the orientation variability alone made the sequential averaging
task difficult enough, we did not further manipulate temporal regularity
in the streams of Gabor patches. As previous studies have shown that
any perturbation of temporally regular stimulation impedes both percep-
tual sensitivity and reaction time (Schroeder and Lakatos, 2009; Cravo et
al., 2013; Morillon et al., 2016), we used the same periodic stimulation in
low- and high-variance conditions.

We tested each observer for 320 trials in eight blocks of 40 trials
each. In each block, a sequence with one of eight possible mean orienta-
tions was repeated five times with 10 randomly shuffled orientations.
Two variance conditions alternated in a block-design manner, and the
order of conditions was counterbalanced across observers. We gave the
observers breaks within and between blocks as necessary.

EEG signal acquisition and preprocessing. The EEG data were col-
lected with 128-sensor HydroCel Sensor Nets (Electrical Geodesics)
at a sampling rate of 500Hz and were bandpass filtered from 2Hz to
200Hz. The raw data were then epoched between �150ms and
6700ms relative to the first stimulus onset. We used the Fully
Automated Statistical Thresholding for EEG Artifact Rejection
(Nolan et al., 2010) package to reject artifacts and interpolation of
noisy EEG sensors. Finally, the EEG was rereferenced to the common
average of all the sensors. All analyses were performed with 111 EEG
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channels, excluding 17 channels vulnerable to movement artifacts
including electrodes around the ears and on the face. The elimination
of these nuisance channels did not change the results of the analyses
that used 128 EEG channels.

Behavioral data analysis . First, we performed linear regression anal-
ysis to quantify the relative influence of each sequential position on the
observers’ reported perceptual mean orientation (Juni et al., 2012;
Hubert-Wallander and Boynton, 2015) as follows,

Rj ¼
X10

i¼1

wixij;

where Rj is the observer’s reported perceptual mean orientation for trial
j, xij is the orientation of the Gabor patch at sequential position i and
trial j, and wi is the weight for sequential position i. The 10 relative
weight values averaged across observers for both variance conditions are
plotted in Figure 1d. We additionally performed linear regression analy-
sis to calculate the regression slope of the relative weight values over 10
sequential positions. We used the slope as a proxy of primacy or recency
effect (Fig. 1e). A negative slope indicates a primacy effect, and a positive
slope indicates a recency effect.

To examine the effect of sequence variance on how the perceptual
mean is computed during a sequential averaging task, the observers’ be-
havioral data were fit to the sequential update model (Navajas et al.,
2017). This model is based on the assumption that observers keep track
of the mean orientation and update it after each stimulus presentation.
In this model, observers combine a noisy estimate of the current stimu-
lus with their previous estimate of the mean as follows:

mi ¼ 1� lð Þmi�1 1 l u i 1 gu ij i;

where mi is the estimate of the mean after i stimuli (m0 ¼ 0Þ; 0,l,1
determines the relative weighting of recent versus more distant stimuli,

u i is the actual orientation of the ith stimulus in the sequence, j i is
sampled from the standard normal distribution, and g is a free parame-
ter that indicates the strength of the noise. For each variance condition,
we implemented a constrained nonlinear optimization algorithm to
determine the best-fitting parameters l and g that minimized the root
mean square of the difference between the predicted and reported mean
orientations.

Inverted encoding model. To reconstruct the orientation information
from the spatially distributed pattern of the EEG signals, we used an
IEM (Brouwer and Heeger, 2009; Garcia et al., 2013; Myers et al., 2015;
Foster et al., 2017), where each orientation is represented using weights
from a linear basis set of population tuning curves. Forty hypothetical
channel tuning functions were centered at 40 orientations used in trials,
evenly spaced from 0° to 180° in steps of 4.5°; each basis function was a
half-sinusoidal function raised to the fifth power. The epoched signals
were baseline corrected using the average signal from �150 to �50ms
relative to the onset of the first Gabor patch presented in the sequence of
each trial. We focused all our IEM analyses on the EEG signals above
2Hz. The main reason was to minimize the effect of the physically
driven oscillatory waveform [steady-state visual evoked potential
(SSVEP)] at the stimulus presentation rate of 100ms ON to 500ms OFF
on the representational dynamics, although the periodic stimulation still
elicited higher harmonic SSVEP responses in EEG. Also, the current
research was aimed at investigating whether the EEG activity pattern dy-
namics directly represent the stimulus and the mean information during
a sequential averaging task rather than confirming the role of the specific
frequency band activity in rhythmically modulating the gain of informa-
tion processing because various frequency band activities are already
known to be involved in sensory and cognitive information processing
(Maris and Oostenveld, 2007; Busch et al., 2009; Busch and VanRullen,
2010; Landau and Fries, 2012; Fiebelkorn et al., 2013; Landau et al.,
2015; Fiebelkorn et al., 2018; Helfrich et al., 2018) regardless of external
stimuli being presented at a rate of particular frequency in the range of
delta (Schroeder and Lakatos, 2009; Wyart et al., 2012; Cravo et al.,
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Figure 1. Stimuli and trial sequence, experimental conditions, and behavioral data analysis. a, Trial sequence. After a fixation period, 10 randomly oriented Gabor patches were sequentially
presented, and the participants were instructed to report the mean orientation of the sequence by adjusting a red probe bar at the end of the sequence. b, Experimental conditions. Each trial
had either low (4.5°) or high (9°) interstimulus orientation variance of 10 sequential Gabor patches. c, Behavioral performance in the low-variance and high-variance sequences. d, Mean
weights (regression coefficients) as a function of sequential position. The x-axis indicates the sequential order of the presented Gabor patches on each trial. The y-axis indicates the relative influ-
ence of each stimulus on the participants’ responses in the task. The dashed line indicates the expected weights when all sequential stimuli have the equal amount of influence on participants’
responses. e, Linear slope of regression coefficients across sequential positions. n.s., Not significant. Error bars indicate61 SEM (c–e).
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2013) or theta (Hanslmayr et al., 2013; Fiebelkorn et al., 2018; Helfrich et
al., 2018; Zhang et al., 2018) band.

Recovering physical orientation during the sequence presentation pe-
riod. To recover stimulus orientations, the stimulus-evoked activities of
all the sequentially presented Gabor patches labeled with their physical
orientations were trained and tested in the leave-one-trial-out (i.e., leave
10 samples out) fashion. Throughout this article, a sample is simply a
multivariate EEG activity evoked by an individual-oriented Gabor patch.
Specifically, 10 Gabor patches in each sequence from both variance
conditions were independently epoched between �100ms and 700ms
relative to each Gabor patch onset and labeled with their physical orien-
tations. Of the 3200 samples across both variance conditions (80 samples
per 1 of 40 orientations), 10 samples from one test trial were tested with
the inverted encoding model weight matrix trained on the remaining
3190 samples. For each sample, the channel tuning function was zero
centered relative to the presented orientation. This procedure was
repeated for each time point in the stimulus epoch before moving to the
next iteration in the leave-one-trial-out procedure. Zero-centered orien-
tation-selective tuning functions were then separated into each experi-
mental condition (1600 samples per variance condition) and averaged
across trials for each condition.

We constructed the inverted encoding model as follows:

B1 ¼ WC1;

where B1 is the training set (111 sensors � 3190 samples) and C1 is the
hypothetical channel tuning function (40 orientations � 3190 samples).
Then, we estimated the weight matrix W (111 sensors� 40 orientations)
by multiplying both sides by the pseudoinverse of C1 as in the ordinary
least squares (OLS) as follows:

Ŵ ¼ B1C
T
1 ðC1C

T
1 Þ�1

:

We estimated the population orientation response Ĉ2 (40 orienta-
tions � 10 samples) with the estimated weight Ŵ and the test set B2

(111 sensors� 10 samples) as follows:

Ĉ2 ¼ ðŴT
ŴÞ�1Ŵ

T
B2;

where Ĉ2 is the tuning curve of the test set, Ŵ is the weight matrix, Ŵ
T

is its transpose, and Ŵ
�1

is its pseudoinverse. For each time point in the
epoch of all training sets (�100 to 700ms after each stimulus onset), we
applied the estimated weights to the same time point in the test set and
then zero centered the output tuning curves Ĉ2 relative to the labeled
physical orientation of the sample. This procedure was repeated for all
time points in the epoch (in 10ms steps, using a sliding window of
40ms). When we plotted the reconstructed tuning curves before zero
centering, their peak locations at 40 different physical stimulus orienta-
tions from 0° to 180° in steps of 4.5° were clearly distinguished from
each other (see Fig. 3b).

To summarize the tuning-curve slope as a function of time, we calcu-
lated the linear slope of the zero-centered tuning curve from �90° to 0°
at each time point in the epoch (Myers et al., 2015). We averaged the
zero-centered tuning curves that were equidistant from 0° (i.e., 14.5°
and �4.5°, 122.5°, and �22.5°). The resulting orientation channel time
course was smoothed with a Gaussian kernel (s = 30ms; see Figs. 3c,d,
4b, 5a, 6a). We then fit a linear slope across the orientation channels
from �90° to 0°, separately for each time point, variance condition, and
observer. Tuning-curve slope was evaluated using one-sample t tests
(against zero). In doing so, zero tuning-curve slope corresponded to no
orientation selectivity, whereas higher tuning-curve slope corresponded
to greater orientation selectivity. Multiple comparisons across time
points were corrected using nonparametric cluster-based permutation
testing (Maris and Oostenveld, 2007; 5000 permutations).

Recovering mean orientation during the sequence presentation pe-
riod.We performed another IEM analysis to determine the mean orien-
tation represented in each of the stimulus-evoked activity patterns of
Gabor patches presented in the trial. This analysis had two purposes.

The first was to examine how sequential variability influences the accu-
racy of the mean information represented in the EEG activity patterns
during the sequence presentation period. Thus, we checked whether the
difference in behavioral performance between the two conditions corre-
lated with the difference in the representational quality of the mean in-
formation. The second purpose was to examine whether observers used
the sequential update strategy to extract the mean orientation over the
sequence. Specifically, we examined whether the neural representation
of the mean orientation becomes increasingly more precise as a function
of sequential position.

To recover the mean orientation, we trained the same inverted
encoding model as described above with 3190 stimulus-evoked activity
patterns epoched between �100ms and 700ms relative to each Gabor
patch onset, except for 10 stimulus-evoked activity patterns from one
test trial. Both training (3190 samples) and test data (10 samples from
one trial) were labeled with their mean orientation of the corresponding
trials. The population tuning curve was recovered by applying the weight
matrix to the left-out samples of the trial. For each test sample, the popu-
lation tuning curve was zero centered relative to the mean orientation.
This procedure was repeated for each time point in the stimulus epoch
before moving to the next iteration in the leave-one-trial-out (i.e., leave
10 samples out) fashion.

To investigate whether observers could keep track of the mean orien-
tation after each stimulus presentation, we hypothesized that the mean
orientation tuning-curve slope gradually increases as a function of se-
quential position if successive samples of sensory evidence are accumu-
lated across sequential positions. We collapsed data across the low-
variance and high-variance conditions and then performed a linear
regression analysis on 10 tuning-curve slopes across sequential positions
(see Figs. 4-6). This linear regression analysis was repeated at every time
point from �100ms to 700ms after each Gabor patch onset. These out-
put slopes were used to find the time clusters where regression slopes
were significantly higher than zero, using a nonparametric cluster-based
permutation testing (Maris and Oostenveld, 2007; 5000 permutations).
Only when significant time clusters were found through the repeated lin-
ear regression analysis, tuning-curve slopes at each sequential position
were averaged within a significant time cluster. The averaged 10 tuning-
curve slopes were then used for testing the hypothesis of the linearly
increasing trend of tuning-curve slopes of mean orientation across se-
quential positions. Specifically, we calculated the linear regression slope
of the averaged tuning-curve slopes over sequential positions and com-
pared the steepness between the low-variance and high-variance condi-
tions. It would be worse for the encoding model of mean orientation to
include all samples, even those belonging to the early sequential posi-
tions, because mean orientation cannot be precisely estimated with only
a small portion of sequential stimuli. However, it is difficult to make an
assumption about the sequential position where mean orientation starts
to be precisely extracted. Therefore, to avoid selection problems and
maximize statistical power, we used all samples and labeled them with
their mean orientation of a trial. If there are samples where the mean ori-
entation is represented, these data would be more influential when train-
ing the tuning-curve weight matrix; where the mean information is not
represented, marginal influence is exerted on computing the weight
matrix.

We split 111 electrodes in three clusters to examine the role of
frontoparietal region in a sequential perceptual averaging process.
In anterior, middle, and posterior electrode clusters, we performed
the same linear regression analysis to find time points where the
linear regression slopes across sequential positions were signifi-
cantly positive.

Cross-temporal generalization of the IEM. When we performed the
cross-temporal generalization analysis, we estimated the weight matrix
using EEG data at each time point and applied the weight for the estima-
tions of the channel responses across all time points. Specifically, we
trained a weight matrix from the training set at time t and applied the
estimated weight matrix to the test set at time t9. This procedure was
repeated so that the weight matrices at every time point had been used
to calculate the slope of the population tuning curves (tuning-curve
slope) at every time point, thereby creating a two-dimensional temporal
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generalization matrix of the population tuning-curve slopes (see Figs. 3e,
4a). All other aspects (e.g., leave-one-trial-out, leave-10-samples-out)
were identical to the inverted encoding model procedure explained
above. Multiple comparisons across train-test time point pairs were cor-
rected for using nonparametric cluster-based permutation testing (Maris
and Oostenveld, 2007; 5000 permutations) to identify the significant
train-test time pair where the tuning-curve slope was larger than 0 based
on one-sample t test.

Results
We analyzed scalp EEG signals from 22 human observers as they
performed a sequential averaging task. Observers viewed 10 ran-
domly oriented Gabor patches sequentially. The Gabor patch
with the mean orientation was not presented to examine the
internally generated representations of the mean. Following each
sequence, observers were instructed to report the mean orienta-
tion by adjusting a red probe bar, preceded by a 700ms blank pe-
riod (Fig. 1a). The high- and low-variance sequences were
presented in separate blocks (Fig. 1b; see above, Materials and
Methods).

Modeling of sequential averaging process
The perceptual mean error was larger in the high-variance condi-
tion than in the low-variance condition (t(21) = �8.63, p, 10�7;
Fig. 1c,d). To examine the relative influence of individual stimu-
lus orientation on the perceived mean orientation, we first per-
formed linear regression analysis (Juni et al., 2012; Hubert-
Wallander and Boynton, 2015; see above, Materials and
Methods). The behavioral data fit well to this weighted average
model in both low-variance (r2 = 0.946 0.04) and high-variance
conditions (r2 = 0.82 6 0.01), and the model showed signifi-
cantly higher r2 value in the low- than in the high-variance con-
dition (t(21) = 6.51, p , 10�5). We found that there was a
significant recency effect (positive slopes); later stimuli had a
greater influence on the perceived mean orientation than earlier
ones in both low-variance (t(21) = 5.43, p , 10�4) and high-var-
iance sequences (t(21) = 2.50, p , 0.05). There was no significant
difference in the recency effect between the two variance condi-
tions (t(21) = 1.64, p . 0.05; Fig. 1e). This result is in contrast to
that of a previous study, which showed that recent stimuli had a
greater influence on the perceptual mean orientation for the low-
than the high-variance sequence (Navajas et al., 2017). This con-
trasting result may be partly because of the difference in
sequence lengths; Navajas et al.’s (2017) sequence contained 30
stimuli, whereas ours contained only 10. We speculate that
shorter sequences have advantages over longer sequences for
remembering the earlier part of the sequence, so that even in the
high-variance sequence, observers were able to estimate the
mean of the sequence, leading to the same recency effect.
Furthermore, low- and high-variance conditions were equivalent
to the top two high-variance conditions in the study by Navajas
et al. (2017), and the effect of environmental volatility on recency
effect might be similar in our task.

Next, we fitted a variant of a leaky integrator model, called
the sequential update model (Navajas et al., 2017), to the behav-
ioral data. Because observers were required to report the mean
orientation of each sequence, we assume that they updated their
estimate of the mean after each stimulus presentation by com-
bining a noisy estimate of the current stimulus with their previ-
ous estimate of the mean (see above, Materials and Methods) as
in the following:

mi ¼ 1� lð Þmi�1 1l u i 1 gu ij i:

The model fitted the behavioral data well in both variance
conditions (low-variance sequence: r2 = 0.93 6 0.04; high-var-
iance sequence: r2 = 0.80 6 0.10), being significantly better for
the low-variance than the high-variance condition (t(21) = 6.81,
p, 10�6). The model predicted that the leak constant l , the rel-
ative weighting of recent versus more distant stimuli, did not dif-
fer between the two variance conditions (t(21) = 0.21, p . 0.8;
Fig. 2a). This result is consistent with the preceding analysis
using the weighted average model showing that the recency effect
was comparable across both conditions (Fig. 1e). In both low-
and high-variance conditions, the recency effect was well cap-
tured by the leak constant l that correlated positively with the
regression slope of the average weights at 10 sequential positions
in Figure 1d (r = 0.60, p = 0.003 for low variance; r = 0.56, p =
0.007 for high-variance condition; Fig. 2c,d). We also found that
stimuli have a larger amount of multiplicative noise (g ) in high
variance than in the low-variance condition (t(21) = �3.83, p ,
0.001; Fig. 2b). This indicates that the process of updating mean
orientation was noisier in the high-variance condition, leading to
accurate representations of mean orientation at the end of the
sequence.

Probing the neural mechanisms of sequential averaging in
the presence of variability
To probe the neural bases of sequential averaging, we used an
inverted encoding model (IEM) to recover information about
the individual stimulus orientations and the mean orientation
from the full EEG signals (Brouwer and Heeger, 2009; Garcia et
al., 2013; Myers et al., 2015; Foster et al., 2017; see above,
Materials and Methods). We characterized the effect of sequen-
tial variability on both the neural encoding of individual orienta-
tions and the neural integration of orientation by directly
visualizing the temporal dynamics of orientation representation.
Consistent with the model-fitting of the behavioral data suggest-
ing greater integration noise in the high-variance condition, the
IEM analysis confirmed that the process of sequentially integrat-
ing individual orientations to update the mean was degraded in
the high-variance condition.

Recovering the individual stimulus orientation
First, we investigated whether a more variable sequence caused
the individual stimulus orientation to be encoded less precisely
in the EEG signals despite the presentation of the same physical
stimuli in both sequences. To recover the individual stimulus ori-
entation of the sequence, we applied an inverted encoding model
to stimulus-evoked EEG signals. Forty idealized tuning curves,
equally spaced between 0° and 180°, were used as basis functions
(Fig. 3a). Each epoched data were labeled with the presented
stimulus orientations, and those data were used to train and test
the inverted encoding model in the leave-one-sequence-out
cross-validation procedure (see above, Materials and Methods).
Consequently, we obtained population tuning curves as a func-
tion of time for the presented stimulus orientations for both
sequences. The reconstructed population tuning curves averaged
from 0 ms to 200 ms poststimulus onset showed distinct peaks at
40 different stimulus orientations (Fig. 3b). When the population
tuning curves were zero centered relative to their presented ori-
entations, they revealed that the stimulus orientations were rep-
resented in multivariate EEG activity for almost the entire period
after each stimulus onset (Fig. 3c; 0–510ms relative to stimulus
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onset, cluster corrected, p , 0.001 for low
variance; 10–550ms relative to stimulus
onset, cluster-corrected, p , 0.001 for high
variance). Orientation-specific coding accu-
racies measured by the linear slopes of the
tuning curves (see above, Materials and
Methods) were not significantly different
between the two conditions (Fig. 3d; cluster-
based permutation test). We additionally
performed a paired t test on the tuning-
curve slopes averaged across time periods
that showed significantly positive tuning-
curve slopes (from 100ms to 450ms relative
to stimulus onset). The difference between
the two variance conditions was not signifi-
cant (t(21) = 1.75, p = 0.094). These findings
show that although individual orientations
are encoded in the dynamically changing
EEG patterns in both variance conditions, it
is not a better encoding of individual orien-
tation that explains better perceptual averag-
ing in the low-variance sequence (Fig. 3e).

Recovering the mean orientation
Next, we investigated whether a more vari-
able sequence caused the mean orientation
to be less precisely encoded in the EEG
signals. The sequential update modeling of
behavioral data predicted that the updated
mean representation becomes more accurate
toward the end of the sequence. Therefore,
we examined whether the EEG signals
reflected increasingly precise mean orientation representations.
Because the integration noise parameter g was significantly larger
in the high-variance than in the low-variance condition (Fig. 2b),
we also investigated whether the low-variance condition allowed
observers to more precisely update the mean orientation. For this
analysis, we assumed that each presentation of a Gabor, the visual
evoked response pattern includes the neural representations of
both the current stimulus orientation and the updated mean ori-
entation. To isolate the latter, we trained the weight matrix to the
mean orientation of the sequence and aligned the recovered orien-
tation tuning curves to the mean orientation of the sequence at ev-
ery time point after each stimulus onset (see above, Materials and
Methods). Our rationale for labeling sequential samples as their
mean orientation was that if the encoding model learns 10 samples
in each trial as the same mean orientation instead of their own
physical orientations, it would discard differences among individ-
ual Gabor orientations to only keep the internally integrated orien-
tation that should be close to the mean orientation. This method
allowed us to track the internal abstract representation of the
mean orientation regardless of the physically presented orienta-
tion. It also enabled us to interpret the tuning-curve slope at each
sequential position as the distance between the currently repre-
sented mean orientation and the actual mean orientation of the
whole sequence.

We first checked whether the neural representation of the
mean orientation indeed existed in stimulus-evoked multivariate
EEG activity. The mean orientation selective tuning-curve slopes
averaged across 10 sequential positions show that the mean ori-
entations were well represented in the dynamically evolving EEG
activity pattern for both sequences (Fig. 4a). In the low-variance
condition, the two off-diagonal significant clusters indicate that

the current and the next mean representations encoded in the
dynamically changing stimulus-evoked EEG patterns correspond
in the earliest period (training time, 600–690ms, test time, 0–
100ms, cluster, p = 0.007; and training time, 0–120ms, test time,
620–690ms, cluster, p = 0.003; Fig. 4a, left). The diagonals in
Figure 4a show that the mean orientation information emerges
shortly after each Gabor onset (Fig. 4b, blue lines; �20 to 420ms
relative to stimulus onset, cluster-corrected, p , 0.001, and 510–
690ms relative to stimulus onset, cluster-corrected, p = 0.009 for
low variance; Fig. 4b, red lines; 50–340ms relative to stimulus
onset, cluster-corrected, p = 0.001 for high variance). The neural
representations of the mean orientation were more precise in the
low-variance condition than in the high-variance condition (Fig.
4b, orange lines; �70 to 150ms relative to stimulus onset, clus-
ter-corrected, p = 0.005; 230–380ms relative to stimulus onset,
cluster-corrected, p = 0.015, and 480–680ms relative to stimulus
onset, cluster-corrected, p = 0.029). Figure 4c shows the accuracy
of representing the mean orientation as a function of sequential
position at every time point after each stimulus onset in the low-
variance and high-variance conditions, respectively. We col-
lapsed these data across both variance conditions and performed
a linear regression analysis on 10 tuning-curve slope values at
each time point to track the sequential evolution of the mean ori-
entation represented in the EEG signals. We found two signifi-
cant clusters of time points at which the mean orientation
representation became increasingly precise across the 10 sequen-
tial positions (140–180ms and 270–320ms relative to stimulus
onset, cluster-corrected, p = 0.026 and p = 0.029, respectively, for
each cluster; these time periods are depicted in Fig. 4c using
transparency mask highlights). These time points were later than
the time points at which the representational accuracy of the pre-
sented orientation maximized as shown in Figure 3d. These
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results are summarized by averaging the mean tuning-curve
slopes across time points of the two significant clusters separately
for each condition (Fig. 4d).

Because a large noise constant g indicates a noisy integration
of individual stimulus orientation information, we checked
whether the updated mean orientation information became less
precise as more stimulus orientations were integrated into a
more variable environment. For each sequence, we calculated the
linear regression slope of tuning-curve slopes of mean orienta-
tion at 10 sequential positions. We found a steeper regression
slope of tuning-curve slopes of mean orientation across the 10
sequential positions in the low-variance condition than in the
high-variance condition (t(21) = 2.88, p = 0.009; Fig. 4e). This dif-
ference was mainly because of the higher tuning-curve slope val-
ues in the later part of the low-variance sequence. The tuning-

curve slope value averaged from the 6th to the 10th stimuli was
higher in the low-variance condition than in the high-variance
condition (t(21) = 2.30, p = 0.032; Fig. 4f), whereas there was no
difference in the tuning-curve slope averaged from the first to
the fifth stimuli between the two conditions (t(21) = 0.13, p. 0.8;
Fig. 4f). For the more variable sequence, the less precise repre-
sentation of the mean orientation indicated by the shallow
regression slope was consistent with the significantly larger noise
constant predicted by the sequential update model (Fig. 2b),
which may lead to a poor behavioral performance in judging the
perceptual mean (Fig. 1c). Although the behavioral data in the
high-variance condition were well fit by the sequential update
model (r2 = 0.80 6 0.10; Fig. 2), the linear regression analysis of
the 10 slope values showed a smaller Pearson correlation coeffi-
cient in the high-variance condition than in the low-variance

Figure 3. Temporal dynamics of the reconstructed tuning curves of stimulus orientation. The encoding model was trained and tested on stimulus-evoked activities from�100 to 700 ms af-
ter stimulus onset, with respect to their physical orientations. a, Hypothetical tuning curve (basis functions). Each color corresponds to 1 of 40 different orientations. b, Reconstructed stimulus
orientation tuning curves (averaged from 100 to 200 ms after stimulus onset). Color coding is same as a. c, Time-resolved tuning curves. Tuning curves were zero centered and were averaged
across trials separately for both variance conditions (left, low variance; right, high variance). d, Tuning-curve slope for both variance conditions. Top bars, The time period when the tuning-curve
slope is significantly greater than zero (p, 0.05, based on cluster extent). Shaded areas indicate61 SEM. Right, Bar graphs indicate tuning-curve slopes averaged from 100 ms to 450 ms af-
ter stimulus onset for the comparison between the two variance conditions. Error bars indicate61 SEM. n.s., Not significant. c–d, Gray bars represent the time period when the stimulus was
presented. e, Cross-temporal generalization of tuning-curve slope of stimulus orientation. The tuning-curve slope of physical orientation for low-variance (left) and high-variance (right) condi-
tions was estimated by training weights on one time point in the training data and applying them to all time points in the test data. The transparency mask highlights the significant clusters
where tuning-curve slopes are.0 (one tailed, p, 0.05, based on cluster extent).
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condition (r = 0.29 6 0.06 for low variance, r = 0.13 6 0.06 for
high variance, and t(21) = 2.22, p = 0.04). This suggests that
the tuning-curve slope of mean orientation as a function of
sequential position is less consistent with the linearly
increasing trend in the high-variance condition. This is also
in line with the fact that the sequential update model fits
the behavioral data in the low-variance condition better
than in the high-variance condition (t(21) = 6.81, p , 10�6;

Fig. 2). Thus, we cannot rule out the possibility that the
observers might have used different strategies for comput-
ing the mean orientation other than the sequential updating
in a more variable environment.

When we performed the same linear regression analyses on
the accuracy of the representations of individual stimulus orien-
tations recovered from labeling the stimulus-evoked activities as
their physical orientations as in Figure 3, we did not find gradual

Figure 4. Temporal dynamics of the reconstructed tuning curves of mean orientation. The encoding model was trained and tested on stimulus-evoked activities from �100 to 700 ms after
stimulus onset, with respect to their mean orientation in each trial. a, Cross-temporal generalization of tuning-curve slope of mean orientation. The tuning-curve slope of mean orientation for
low-variance (left) and high-variance (right) conditions was estimated by training weights on one time point in the training data and applying them to all time points in the test data. The
transparency mask highlights the significant clusters where tuning-curve slopes are.0 (one tailed, p, 0.05, based on cluster extent). b, Time-resolved tuning-curve (T.C.) slopes with respect
to the mean orientation (left). Right, Red and blue bars represent the time period when tuning-curve slope is significantly .0 (one tailed, p , 0.05, based on cluster extent; red, high var-
iance; blue, low variance). The orange bar indicates the time period when tuning-curve slope is significantly different between the two variance conditions. c, Time-resolved tuning-curve slopes
with respect to the mean orientation at 10 sequential positions for low-variance (left) and high-variance (right) conditions. Color represents tuning-curve slope. The transparency mask high-
lights the significant clusters where linear slopes across sequential positions are positively significant for all trials, regardless of their variance conditions. (see above, Materials and Methods).
Gray bars represent the time period when the stimulus was presented. d, Tuning-curve slope bars as a function of sequential positions averaged across time on the significant clusters in b.
e, The linear regression slope of tuning-curve slopes across sequential positions for the same time period as d. f, Average tuning-curve slope of the first half stimuli (from the 1st to 5th stimuli,
left) and second half stimuli (from the 6th to 10th stimuli; right) in a sequence for the same period as d. n.s., Not significant. Error bars in indicate 61 SEM (d–f); *p, 0.05, **p, 0.01,
***p, 0.001, ****p, 0.0001.
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increases in the accuracy of neural representation over sequential
positions in either condition (Fig. 5). The absence of a positive
linear trend of the stimulus-coding accuracy suggests that the
gradual increase in the mean-coding accuracy is not simply
because of the increase in the signal-to-noise ratio with increas-
ing sequential positions. Together, our results indicate that the
positive linear trend of the mean-coding accuracy is because of
the sequential updating of the mean orientation information af-
ter each stimulus onset.

The role of frontoparietal region in sequential perceptual
averaging
Despite the limitation of low spatial resolution of EEG, we inves-
tigated where the sequential update was processed in the brain
by splitting total electrodes into three electrode clusters (36 ante-
rior, 37 middle, and 37 posterior). We performed the same linear
regression analysis to search for the time points where the regres-
sion slope of tuning-curve slope values over sequence was signifi-
cantly positive (see above, Materials and Methods). Only when
the significant time cluster was found, tuning-curve slope values
at each sequential position were averaged within the significant
time cluster. The linearly increasing trend of mean-coding

accuracy was not identified in the posterior region cluster (Fig.
6a), although the neural representation of the mean orientation
gradually became more precise as a function of sequential posi-
tion in the anterior and central regions (Fig. 6b,c). Specifically in
the anterior electrode cluster, the update of the mean orientation
occurred every 0.16 s after each sequential stimulus onset as
shown in the highlighted time cluster in Figure 6c. This indicates
that the mean orientation is updated regularly in frontal region.
On the other hand, the sequential update process occurred at
two separate highlighted time clusters ;0.16 s and 0.3 s in the
middle electrode cluster (Fig. 6b). This suggests that the rate of
evidence accumulation is not fixed in the parietal region. Note
that no bar graphs were plotted in the posterior electrode cluster
because there was not a single time point where the regression
slope of tuning-curve slope values over sequence was signifi-
cantly positive in both variance conditions. These results are in
line with previous studies showing that prefrontal and parietal
cortex encode task-general information as well as task-specific
information (Swaminathan and Freedman, 2012; Ester et al.,
2015; Sarma et al., 2016; Kim et al., 2017; Oh et al., 2019).

Caution is necessary regarding the underlying neural sources
of the sequential updates because we focused our analyses on the
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Figure 5. Temporal dynamics of the reconstructed tuning curves of physical orientation. The encoding model was trained and tested on stimulus-evoked activities from�100 to 700 ms af-
ter stimulus onset, with respect to their individual physical orientations. a, Left, Time-resolved tuning-curve (T.C.) slopes with respect to the physical orientation. Right, Red and blue bars repre-
sent the time period when tuning-curve slope is significantly greater than zero (one tailed, p, 0.05, based on cluster extent; red, high variance; blue, low variance). b, Time-resolved tuning-
curve slopes with respect to the physical orientation at 10 sequential positions for low-variance (left) and high-variance (right) conditions. Color represents tuning-curve slope. The transparency
mask highlights the significant clusters where linear regression slopes across sequential positions are positively significant for all trials, regardless of their variance conditions (see above,
Materials and Methods). In this analysis with physical orientation, there was no significant cluster in both variance conditions. Gray bars represent the time period when stimulus was presented.
c, Tuning-curve slope bars as a function of a sequential position averaged across all time points in the significant clusters of Figure 4b. d, Linear regression slope of tuning-curve slopes across
sequential positions for the same time period as in c. e, Average tuning-curve slope of the first half stimuli (from the 1st to 5th stimuli, left) and second-half stimuli (from the 6th to 10th stim-
uli, right) in a sequence for the same period as c. n.s., Not significant. Error bars indicate61 SEM (c–e); *p, 0.05, **p, 0.01, ***p, 0.001, ****p, 0.0001, *****p, 0.00001.
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full EEG signals above 2Hz to minimize the effect of the physi-
cally driven SSVEP at the stimulus presentation frequency on the
representational dynamics (see above, Materials and Methods).
The analyzed multivariate EEG signals above 2Hz are still a mix-
ture of exogenous higher harmonic SSVEPs and endogenous os-
cillatory signals that cannot be completely disentangled from
each other. Especially the strong stimulus-driven SSVEP har-
monics appeared in the posterior electrode cluster not in the
middle and anterior electrode clusters. In light of these points,

the fact that the linearly increasing trend of mean-coding accu-
racy was not identified in the posterior electrode cluster strongly
suggests that the widespread endogenous rather than exogenous
dynamic network activity underlies the sequential averaging pro-
cess especially in frontoparietal region. The fact that the mean-
coding accuracy extracted from the EEG signals including low-
frequency activity (,2Hz) did not linearly increase across se-
quential positions (data not shown) also suggests that the se-
quential integration is not because of the high signal-to-noise

Figure 6. Temporal dynamics of the reconstructed tuning curves of mean orientation for visual, parietal, and frontal electrode clusters indicated by red dots (a–c, left). a, Middle, The time-
resolved tuning-curve slopes with respect to the mean orientation at 10 sequential positions in the visual region for low-variance and high-variance conditions, respectively. The transparency
mask highlights the time clusters where linear regression slopes across sequential positions are significantly positive for all trials, regardless of their variance conditions (see above, Materials
and Methods). Note that there is no significant time cluster in the visual region. Gray bars represent the time period when stimulus was presented. b, Middle, The time-resolved tuning-curve
slopes with respect to the mean orientation at 10 sequential positions in the parietal region for low-variance and high-variance conditions, respectively. There are two significant time clusters
in the parietal region. Right, Top and bottom graphs indicate tuning-curve slope bars as a function of a sequential position averaged across all time points in the two significant time clusters,
for low-variance and high-variance conditions, respectively. c, Midde, The time-resolved tuning-curve slopes with respect to the mean orientation at 10 sequential positions in the frontal region
for low-variance and high-variance conditions, respectively. There is one significant time cluster in the frontal region. Right, Top and bottom graphs indicate tuning-curve slope bars as a func-
tion of a sequential position averaged across all time points in the significant time cluster for low-variance and high-variance conditions, respectively. Error bars in indicate61 SEM (b, c).
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ratio of SSVEP at physically driven stimulation frequency,
although this SSVEP component may still play a role in resetting
the update time points. Prior neurophysiological studies suggest
that large-scale dynamic network interactions that span multiple
brain regions are involved in various perceptual and cognitive
processes (Donner et al., 2007; Pesaran et al., 2008; Siegel et al.,
2012; Zhang et al., 2018).

Discussion
To probe the mechanisms of sequential averaging, we combined
computational modeling of behavioral data with a multivariate
pattern analysis that visualized how the neural representation of
the mean orientation developed while viewing a sequence of dif-
ferently oriented Gabor stimuli. The pattern analysis revealed
that the dynamically evolving patterns of the stimulus-evoked
EEG activities encoded the mean orientation as well as the stimu-
lus orientation (Figs. 3e, 4a). Regardless of whether the variance
of the individual stimulus orientations was low or high, the neu-
ral representations of individual stimulus orientations were
equally precise (Fig. 3d), and the tuning-curve slope of the mean
orientation increased gradually across the 10 sequential positions
(Fig. 4c,d). This linearly increasing trend was steeper in the low-
variance than in the high-variance condition (Fig. 4e). These
results are consistent with the sequential update model, which
predicted that multiple stimuli would be sequentially integrated
regardless of stimulus variance, but high stimulus variance would
make the updating noisier (Fig. 2a,b). Together, these findings
suggest that environmental volatility mainly influences the noisi-
ness in integrating sequential stimuli and the encoding quality of
the mean information toward the end of the sequence, leading to
behavioral difference in perceptual mean judgment between the
low- and high-variance conditions.

Our results have a number of implications for understanding
sequential averaging mechanisms. First, the manner of sequential
information processing may depend on the demand of the be-
havioral task. The present study required observers to integrate a
series of briefly presented multiple stimuli, which is likely to
make the task more challenging in the high-variance condition
than in the low-variance condition. This demanding task under
time pressure may not allow observers to spend more time inte-
grating the current stimulus with the previous stimulus, eventu-
ally leading to less precise mean information in the high-
variance condition. This is in line with previous studies demon-
strating the detrimental effects of time pressure on overall deci-
sion quality, with the general finding that individuals perform
significantly worse under time pressure (Payne et al., 1988;
Sutter et al., 2003; Kocher and Sutter, 2006; Ahituv et al., 1998).
However, when the task is to integrate information on the con-
tinuously changing single-target stimulus rather than across dif-
ferent successive stimuli as in the current study, observers
change the perceptual integration time scale during the percep-
tual discrimination task (Burr and Santoro, 2001; Kiani et al.,
2008). A study on sound texture perception revealed an obliga-
tory multisecond averaging process whose duration could not be
controlled at will and was much longer for highly variable tex-
tures (McWalter and McDermott, 2018). In another perceptual
decision-making study, where one of the two concurrently pre-
sented streams of luminance changing disks showed a brief in-
crement against the mean luminance of the visual stream,
observers used an integration time scale adapted to the target sig-
nal duration (Ossmy et al., 2013). Unlike these studies that
revealed the time required for a single-target signal integration,

the current study revealed the time required for each sequential
stimulus to be integrated with the following stimulus. On the
other hand, when the task is to categorize or identify the current
stimulus instead of integrating the serially presented stimuli,
human observers rely on their working memory capacity to
remember a few recent stimuli in a volatile environment rather
than a sequential update strategy (Summerfield et al., 2011;
Fischer and Whitney, 2014; Laquitaine and Gardner, 2018). In
this case, the sequential updating may not be efficient because it
runs the risk of pooling stimuli with distinct statistical properties.
In contrast, when estimating the mean orientation of the visual
stream as accurately as possible, it may be advantageous to keep
track of every single stimulus regardless of variability. Thus, pre-
vious studies and our results indicate that the task demand adap-
tively shapes the evidence integration computation even under
the same volatile environment. In our case, volatility did not
change the integration time scale but only added uncertainty to
the sequential update process shaped by the task goal of extract-
ing the mean across time.

The appearance of the increasingly precise mean information
at specific delays after each stimulus onset (Figs. 4c, 6b,c) indi-
cated that the integration of successive stimuli occurred regu-
larly. In frontal region, the update of the mean orientation
occurred every 0.16 s after each sequential stimulus onset (Fig.
6c, highlighted time cluster). In parietal region (Fig. 6b) and all
electrodes (Fig. 4c), the sequential update process occurred at
two separate highlighted time clusters of ;0.16 s and 0.3 s.
These results suggest that the sequential update arises with either
a shorter latency in the anterior brain area than in the middle
brain area or an equal latency in both brain areas. In any case,
the updated mean orientation was encoded in the anterior brain
area no later than in the middle brain area, suggesting either an
early or simultaneous involvement of the anterior brain area in
the sequential perceptual averaging process. A study on binary
perceptual motion categorization similarly showed that prefron-
tal cortex leads the decision process when a monkey determines
whether sequentially presented stimuli belong to the same
motion category during a delayed match-to-category task (Zhou
et al., 2021). This neurophysiological study found that neurons
in both prefrontal and parietal cortex are involved in categorical
encodings of individual stimuli, but the prefrontal cortex appears
more directly involved than the parietal cortex in transforming
categorical encoding into the abstract match/nonmatch decision
by integrating the previously presented stimulus with the cur-
rently visible stimulus. In the current study, the shorter latency
of regular update in the anterior brain area may imply a flow of
sequentially integrated information from the anterior brain area
to other brain areas. Because observers used the same integration
time scale in both variance conditions at the expense of the pre-
cise integration of highly variable stimuli, our findings provide
neural mechanisms to differentially accumulate increasingly
abstract features from a concrete piece of information across the
cortical hierarchy depending on environmental volatility.

Our findings also shed light on whether all individual stimuli
are encoded during sequential averaging. Previous behavioral
studies on sequential averaging indicate that observers use only a
subset of stimuli to accomplish mean representation without ex-
plicitly encoding every individual stimulus (Corbett and Oriet,
2011; Gorea et al., 2014). However, our finding that spatially dis-
tributed EEG activities encoded individual stimulus orientations
in both variance conditions with an equivalent precision suggests
the robust encoding of individual stimuli during a sequential
averaging task. Thus, one possibility for the difference between
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our results and those of other behavioral studies is that although
individual orientations are transiently encoded in the visual sys-
tem, observers do not form robust memories of individual orien-
tations so they cannot be reported or recognized later after the
sequence. The gradually increasing mean-coding accuracy across
sequential positions also suggests that each stimulus is sequen-
tially integrated in both variance conditions (Fig. 4c,d). This
overall trend of approximately linear improvement in the mean
representation over sequence is in line with neuroimaging and
behavioral studies based on the sequential update model frame-
work (Cheadle et al., 2014; Navajas et al., 2017). From the per-
spective of the sequential update model, the subsampling
strategy can be regarded as a special case of the weighted whole-
set averaging strategy (Juni et al., 2012; Hubert-Wallander and
Boynton, 2015), when some of the encoded stimuli are integrated
with no weight for computing the mean of the sequence.
Nevertheless, it is unlikely that only a subset of the encoded stim-
uli is integrated to accomplish mean representation because all
stimuli in the sequence had positive weights (Fig. 1d). In fact,
this regression bias toward the mean of the stimulus distribution
is one of the most robust empirical regularities in studies of
human perceptual judgment across various perceptual domains
(Hollingworth, 1910; Stevens and Greenbaum, 1966; Oh et al.,
2019; Xiang et al., 2021). Especially in Oh et al.’s (2019) work
on visual working memory, the neural representation of mean
orientation emerges, although there was no task requirement
of judging perceptual mean orientation of concurrently pre-
sented oriented bars, leading to the participant’s biased judg-
ment on target orientation toward the ensemble mean
orientation. Additionally, many previous studies reported bias
effects of recent stimulation history on perceptual process
such as serial dependence (Summerfield et al., 2011; Kiyonaga
et al., 2017; Pascucci et al., 2019). Thus, it is highly likely that
both the regression effect and the recent history effect make it
challenging for observers to perceive and maintain the stimu-
lus attribute as it is. The perceptual distortion of individual
stimuli because of these bias effects is another possible factor
for contributing to the incorrect or failed report of a single
item after the sequence in previous behavioral studies
(Corbett and Oriet, 2011; Gorea et al., 2014).

Finally, future work on sequential information processing
will benefit from characterizing the representational dynam-
ics of the sequential averaging process by systematically
manipulating temporal regularity. Such studies could exploit
heterochronous streams of events to clarify whether the
sequentially updated mean information is reflected in exoge-
nous or endogenous oscillatory signals. This manipulation
will allow us to characterize electrophysiological signatures
of the sequential averaging mechanism by measuring
whether the mean-coding accuracy gradually increases or
fluctuates along sequential positions. When observers main-
tain the sequential update strategy, one can probe whether
their integration time scale adaptively changes with temporal
regularity and environmental volatility. Further, it is impor-
tant to examine whether the mean information develops
automatically over sequence as a function of task. For exam-
ple, by changing both orientations and spatial frequencies in
the stream of Gabor patches and asking observers to report
the mean orientation or the mean spatial frequency or one
particular item’s spatial frequency, one can examine the task
dependency of the sequential averaging process.

In summary, stimulus-specific coding is regularly trans-
formed into a brief coding of the integrated information that

becomes closer to the sequential mean toward the end of the
sequence for the appropriate behavioral response during a se-
quential averaging task. Therefore, the sequential averaging pro-
cess can be best characterized as perceptual dynamics that
swings back and forth between evidence sampling and integra-
tion for the perceptual judgment of the mean at the end of the
sequence. Finally, the steeper linear trend of the mean tuning-
curve slope across sequential positions in the low- rather than in
the high-variance condition suggests that the multivariate activ-
ity pattern dynamics underlie the differential sequential averag-
ing process depending on environmental variability.
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