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SUMMARY

Matrix metalloproteases (MMPs) play a role in remod-
eling the extracellular matrix during brain develop-
ment and have been implicated in synaptic plasticity.
Here, we report that a member of the neuronal
pentraxin (NP) family, neuronal pentraxin receptor
(NPR), undergoes regulated cleavage by the MMP
tumor necrosis factor-a converting enzyme (TACE).
NPR is enriched at excitatory synapses where it asso-
ciates with AMPA-type glutamate receptors (AMPAR)
and enhances synaptogenesis. However, in response
to activation of group 1 mGluRs (mGluR1/5), TACE
cleaves NPR and releases the pentraxin domain
from its N-terminal transmembrane domain. Cleaved
NPR rapidly accumulates in endosomes where it
colocalizes with AMPAR. This process is necessary
for mGluR1/5-dependent LTD in hippocampal and
cerebellar synapses. These observations suggest
that cleaved NPR functions to ‘‘capture’’ AMPAR for
endocytosis and reveal a bifunctional role of NPs in
both synapse strengthening and weakening.

INTRODUCTION

The neuronal pentraxins (NPs) NP1 and neuronal-activity-regu-

lated pentraxin (Narp) are secreted, Ca2+-dependent lectins

that are present at excitatory synapses, and are part of the extra-

cellular synaptic scaffolding protein complex that contributes to

synaptogenesis (Goodman et al., 1996; O’Brien et al., 1999; Tsui

et al., 1996; Xu et al., 2003; Sia et al., 2007). Narp is regulated as

an immediate early gene, and both its mRNA and protein are rap-

idly and transiently upregulated following patterned synaptic ac-

tivity or seizure (Tsui et al., 1996). In assays of synaptogenesis,

Narp overexpression increases excitatory synapse formation
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(O’Brien et al., 1999, 2002; Xu et al., 2003), while dominant-

negative Narp decreases excitatory synapse formation (O’Brien

et al., 2002). In similar assays, NP1 is less effective than Narp

but markedly enhances the synaptogenic activity of submaximal

levels of Narp. Studies of the molecular basis of their synapto-

genic activity identified interactions that mediate assembly of

NPs into highly structured multimers that are covalently linked.

The N-terminal 200 amino acids of Narp and NP1 include

coiled-coil repeats and three cysteines that form specific disul-

fide bonds between different NP molecules. Clusters that form

on the surface of heterologous cells that express NP1 alone

are relatively small, but coexpression of Narp results in disul-

fide-linked NP1-Narp mixed multimers that form large clusters

similar to Narp alone. This ability of Narp to enhance the cluster-

ing activity of NP1 may underlie their cooperative action in

synaptogenesis (Xu et al., 2003).

Analysis of the ability of NPs to bind and cocluster AMPAR

revealed a critical role of the C-terminal pentraxin domain (Xu

et al., 2003). The pentraxin domain is structurally similar to certain

plant lectins, including wheat germ agglutinin (Emsley et al.,

1994), and is a distant member of the LNS domain that is present

in other synaptic proteins including agrin and neurexin (Beckmann

et al., 1998; Rudenko et al., 2001). The pentraxin domain of Narp

and NP1 appear identical in their affinity for binding AMPAR (Xu

et al., 2003). Accordingly, NPs can be understood to be bimod-

ular proteins; the N-terminus mediates self-association and clus-

tering, while the C-terminus mediates coclustering of AMPAR.

Neuronal pentraxin receptor (NPR) is a third member of the NP

family that is primarily expressed in the central nervous system

and physically associates with Narp and NP1 (Dodds et al.,

1997; Kirkpatrick et al., 2000). Like Narp and NP1, NPR binds

AMPAR and contributes to synapse formation (Sia et al., 2007).

Unlike Narp and NP1, NPR possesses an N-terminal trans-

membrane domain and a short (�7 amino acid) intracellular se-

quence. In the present study, we report that NPR is cleaved by

the extracellular protease TACE to release a soluble form of

NPR. TACE is an MMP that is thought to play a central role in
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ectodomain shedding, a process by which regulated cleavage of

membrane proteins can release functional domains (Black,

2002; Blobel, 2000). MMPs have been implicated in migration

of neuronal precursor cells, axonal guidance, and activity-

dependent remodeling of neuronal connections (Del Bigio

et al., 1999; McFarlane, 2003; Ethell and Ethell, 2007). MMPs

have recently been implicated in models of learning and memory

(Tomimatsu et al., 2002; Nagy et al., 2006). However, the mech-

anisms of MMP involvement in synaptic plasticity, as well as

their targets, are largely unknown. In exploring the role of NPR

proteolytic processing, we found that TACE is activated by

group 1 metabotropic glutamate receptors, mGluR1 and mGluR5

(mGluR1/5), in neurons. Using a combination of biochemical and

Figure 1. NPR Associates with Narp, NP1,

and AMPAR at Excitatory Synapses and Is

Proteolytically Processed

(A) Schematic of NPR structure. NPR contains two

coiled-coil domains and a C-terminal pentraxin

domain. Cysteines predicted to form disulfide link-

ages with other NPR subunits as well as other NPs

are labeled. Regions of NPR used to generate Ab

LFC-NPR, Ab 4999, and Ab 4450 are identified.

Cleavage Sites A and B are identified and occur

just before L36 and D176, respectively. Cleavage

produces three NPR fragments, long form cleaved

(LFC-NPR), N-terminal fragment (NTF-NPR), and

C-terminal fragment (CTF-NPR).

(B) Co-IP analysis of interactions between native

NPR, Narp, and NP1 using lysates from WT, NP

TKO, NP1 KO, and Narp KO mouse forebrain.

The �62 kDa band detected by NPR antibody

(Ab 4999) corresponds to the molecular weight

predicted for full-length NPR. The �20 kDa band

corresponds to NTF-NPR.

(C) GluR1-HA, but not GluR6-HA, co-IPs with NPR

from transfected HEK293T cells.

(D) GluR1 co-IPs with NPR from forebrain extracts

derived from WT mice. NP TKO and NPR KO are

provided as control.

(E) NPR is localized to excitatory synapses in

cultured hippocampal neurons (DIV 14; Ab 4450

at 1:200 labeled live). Scale bar = 10 mm.

(F) Multiple fragments of NPR are present in cul-

ture medium of NPR-transfected HEK293T cells.

Western blot analysis was performed on lysates

and medium from transfected cells with Ab 4450

and Ab 4999.

(G) Identification of NPR cleavage sites.

(H) Western blot analysis of NPR protein expres-

sion in extracts of adult hippocampus, cerebellum,

and cortex with Ab 4450 and Ab 4999.

cell biological techniques, we show that

TACE-dependent NPR cleavage is an es-

sential, early event required for mGluR1/

5-dependent internalization of AMPAR,

and for mGluR1/5-dependent long-term

depression (mGluR1/5-dependent LTD)

in both the hippocampus and the cere-

bellum. These studies support of model

in which cleavage of NPR releases NPs

from their transmembrane tether and allows them to be traf-

ficked in endosomes with AMPAR, and thereby contribute to

the downregulation of synaptic AMPAR.

RESULTS

NPR Associates with Narp, NP1, and AMPAR,
and Is Present at Excitatory Synapses
The domain structure of NPR (Figure 1A) is notable for a pre-

dicted N-terminal transmembrane domain (Dodds et al., 1997;

Kirkpatrick et al., 2000), coiled-coil domains and cysteines that

are predicted to mediate homophilic interactions (Xu et al.,

2003), and a C-terminal pentraxin domain. As anticipated from
Neuron 57, 858–871, March 27, 2008 ª2008 Elsevier Inc. 859
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sequence conservation, NPR and Narp form heteromultimer

complexes when coexpressed in HEK293T cells, and their asso-

ciation is dependent on specific cysteine residues within the N

terminus of Narp (see Xu et al., 2003; Figure S1). To examine

NP complexes in brain, lysates from WT mouse were prepared

and IPed with rabbit antibody specific to NP1 or Narp. Lysates

from NP1�/� (NP1 KO), Narp�/� (Narp KO), and combined

NP1�/�/Narp�/�/NPR�/� (NP TKO) were also utilized as controls

(Bjartmar et al., 2006). NPR (Ab 4999) specifically co-IPed with

Narp and NP1 (Figure 1B). Consistent with the notion that NPs

physically interact, there is overlap of NP expression in specific

regions of the hippocampus and cerebellum (Figure S2).

The pentraxin domain of Narp and NP1 is required for inter-

action with AMPAR (Xu et al., 2003). The pentraxin domains of

the NPs are highly conserved, and, therefore, we predicted

that NPR would interact with AMPAR. To test this, AMPAR sub-

unit HA tagged GluR1 (GluR1-HA) was cotransfected with myc-

tagged Narp (Narp-myc) or NPR (NPR-myc) into HEK293T cells,

and lysates were assayed for co-IP. As previously described

(O’Brien et al., 1999), GluR1-HA co-IPed with Narp-myc, while

kainate receptor subunit GluR6-HA did not (Figure 1C). Similarly,

GluR1-HA but not GluR6-HA co-IPed with NPR-myc (Figure 1C).

Additionally, GluR1 co-IPed with NPR from forebrain extracts

derived from WT mice, suggesting that GluR1 and NPR form

associations in vivo (Figure 1D), although interactions may be

indirect.

We examined the subcellular distribution of NPR in primary

hippocampal cultures. NPR antibody (Ab 4450) detected large

clusters that colocalized with PSD-95, a marker for excitatory

synapses (Figure 1E), but not glutamic acid decarboxylase,

a marker for inhibitory axons (not shown). These observations

indicate that NPR is like Narp and NP1 in that it forms physical

associations with other neuronal pentraxins and AMPAR, and

localizes to excitatory synapses.

NPR Is Proteolytically Processed in Heterologous Cells
and in Brain
We noted that when NPR was expressed in HEK293T cells, Ab

4450 detected �62 kDa and �45 kDa proteins in the medium

(Figure 1F, left blot). Their abundance in the medium suggested

that NPR may be proteolytically processed. To examine this, we

affinity purified the �62 kDa and �45 kDa bands from the me-

dium and performed N-terminal Edman sequencing. The �62

kDa species was identified to be a fragment of NPR that begins

at Site A at amino acid 36L, just C-terminal to the predicted trans-

membrane domain (Figures 1A and 1G). The �45 kDa species

was identified as an NPR fragment that begins at Site B, at amino

acid 176D. Cleavage at Site B was predicted to produce a corre-

sponding N-terminal fragment ending at amino acid 175A (Fig-

ures 1A and 1G). Consistent with this prediction, Ab 4999 (see

Figure 1A) detected a�62 kDa band in both the lysates and me-

dium (Figure 1F, right blot) and an additional band of �20 kDa

that was present in the lysates but not in the medium. The 20

kDa fragment corresponds to the predicted molecular weight

of a membrane associated N-terminal fragment produced by

cleavage at Site B.

Cleavage at Site A (L36) produces a secreted product that we

designate long form cleaved NPR (LFC-NPR) that lacks only the
860 Neuron 57, 858–871, March 27, 2008 ª2008 Elsevier Inc.
transmembrane domain and the short cytosolic region. LFC-

NPR migrates on SDS-PAGE with nearly the same apparent

molecular mass as full-length NPR (FL-NPR) at �62 kDa, al-

though on optimal gels, they are resolved as a doublet (Figure

S5C). An antibody generated against the cytosolic N-terminus

was not specific, and we were not able to detect the predicted

residual N-terminus. Cleavage at Site B (D176) produces two

cleavage products, which we designate N-terminal fragment

(NTF-NPR) and C-terminal fragment (CTF-NPR), which migrate

at �20 kDa and �45 kDa, respectively. It is noteworthy that we

were able to detect CTF-NPR in the medium, but NTF-NPR

was present only in lysates of transfected cells (Figure 1F).

This suggests that cleavage at Site B produces NTF-NPR

that remains on the cell surface. Taken together, these data

suggest that NPR is cleaved at either Site A or Site B, but

not both, since a truncated NTF-NPR fragment is not detected

in the medium. The possibility that these products might arise

from alternative splice forms of NPR can be excluded since

the indicated fragments were isolated from transgene expres-

sion of cloned NPR cDNA.

We sought to detect NPR cleavage products in rat brain.

Extracts from adult rat hippocampus, cerebellum, and cortex

were analyzed by western blot. Ab 4450 and Ab 4999 detected

bands that run at the expected �62 kDa after treatment with re-

ducing reagent (Figure 1H). Both antibodies detected lower mo-

lecular weight species from the brain extracts: Ab 4450 detected

a band of �45 kDa that corresponds to CTF-NPR, and Ab 4999

detected a band of �20 kDa that corresponds to NTF-NPR (Fig-

ure 1H). All immunoreactivity for NPR using Ab 4450 or Ab 4999

was absent in brain extracts from mice that lack NPR (Figures S3

and S1B, respectively).

We considered the possibility that the observed fragments of

NPR might result from intracellular processing of an unconven-

tional signal sequence and subsequent secretion, rather than

proteolytic cleavage of membrane-bound FL-NPR. However,

FL-NPR is the predominant form of NPR on the surface of neu-

rons (Figure S6). Additionally, NPR was originally purified from

the membrane fraction of neurons derived from rat brain, and

Edman sequencing confirmed its identity as full-length NPR

(Dodds et al., 1997). Finally, drugs that block cleavage of NPR

(see below) are not known to regulate signal sequence processing

or secretion. Therefore, the cleaved fragments of NPR appear

to be products of surface-membrane-bound, full-length NPR

and not the result of secretion of a signal-sequence processed

form of NPR.

The Transmembrane Domain of NPR Inhibits Its Ability
to Form Surface Clusters
Cleavage at Site A releases LFC-NPR from its transmembrane

domain. In assays comparing the cell biological properties of

NPR and Narp, we noted that FL-NPR is uniformly distributed

on the cell surface, while Narp forms large clusters (Figure 2A).

The retention of secreted Narp on the cell surface requires olig-

omerization, but its physical basis remains to be defined (Xu

et al., 2003). Nevertheless, the marked difference in the proper-

ties of Narp and NPR on the cell surface suggested that the

transmembrane domain of NPR might restrict its ability to form

clusters. To examine this possibility, we generated chimeric
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mutants (CM) of Narp and NPR in which the N-terminal and

C-terminal ends were swapped (Figure 2B). CM-1 and CM-2,

which include various lengths of Narp N-terminus that replace

the NPR transmembrane domain, formed clusters on the surface

of transfected COS-7 cells stained live with anti-myc. By con-

trast, CM-4 and CM-5, which maintain one or both coiled-coil

domains of Narp coupled to the NPR transmembrane domain,

did not (Figure 2A). Moreover, CM-3, which replaces the trans-

membrane domain of NPR with the signal peptide of Narp, and

CM-6, which replaces the signal peptide of Narp with the trans-

membrane domain of NPR demonstrated that the transmem-

brane domain of NPR is necessary (CM-3) and sufficient

(CM-6) to prevent pentraxin cluster formation. These observa-

tions suggest that cleavage at Site A could dramatically alter

the cellular properties of NPR.

NPR Is Cleaved by TACE
We sought to identify mechanisms that could generate cleaved

fragments of NPR. Type I and II transmembrane proteins can

be cleaved by regulated matrix metalloproteases (MMPs; Black,

2002; Blobel, 2000). Accordingly, we tested whether cleavage of

NPR could be induced by signaling pathways that activate

MMPs. Cultures transfected with NPR were treated with phorbol

myristate acetate (PMA), which is known to activate MMPs (Arri-

bas et al., 1996; Buxbaum et al., 1998), and medium from the cul-

tures was sampled at subsequent time points (Figure 3A). PMA

increased the accumulation of NPR in the medium that corre-

sponds to LFC-NPR (Figure 3A). The �45 kDa CTF-NPR was

also present in the medium, but its stimulated accumulation

was less abundant than LFC-NPR and varied between experi-

ments.

Based on these observations, we hypothesized that cleavage

at Site A might be mediated by TACE since TACE is reported to

Figure 2. Transmembrane Domain of NPR

Is Necessary and Sufficient to Inhibit

Cluster Formation

(A) Live cell-surface staining of Narp, NPR, and

Narp/NPR chimera mutants (CM) in transfected

COS-7 cells.

(B) Schematic of the Narp, NPR, and Narp/NPR

chimera constructs used. Narp signal peptide

(closed circle) and NPR transmembrane domain

(open box) are illustrated. All constructs have

a C-terminal myc tag.

mediate PKC-stimulated cleavage of

type I and II proteins such as TNFa,

TGFa, and APP in multiple cell types

(Black, 2002; Blobel, 2000). Consistent

with this hypothesis, PMA-stimulated

generation of LFC-NPR was completely

prevented by the drug TAPI-2, which in-

hibits TACE activity (Arribas et al., 1996;

Moss and Rasmussen, 2007; Figure 3A).

Stimulated generation of LFC-NPR was

also inhibited by the general MMP inhibi-

tor GM6001 (Figure S4). To further exam-

ine the role of TACE, we transfected HEK293 cells with siRNA

specific for human TACE and confirmed that it reduced expres-

sion of native TACE (Figure 3B, right blot). siRNA markedly

reduced PMA-stimulated generation of LFC-NPR (Figure 3B,

left blot). Cotransfection of mouse TACE restored the ability of

PMA to generate LFC-NPR. Together, these observations impli-

cate TACE in regulated cleavage of NPR at Site A. The compar-

atively modest generation of CTF-NPR by PMA was also blocked

by TAPI-2 and TACE siRNA suggesting that cleavage at Site B

may also mediated by TACE (Figures 3A and 3B). Note, however,

that GM6001, which is less selective than TAPI-2, blocks Site A

but not Site B cleavage (Figure S4). This does not exclude a role

for TACE in Site B cleavage since inhibitors of MMPs are re-

ported to be differentially effective for different substrates

(Hooper et al., 1997).

PMA Induces NPR Clusters on the Surface
of Transfected Cells
We examined the prediction that regulated cleavage of NPR

could result in its redistribution to clusters on the cell surface.

COS-7 cells expressing NPR-myc were stained live with anti-

myc antibody after treatment with PMA or vehicle. Cells treated

with vehicle exhibited a uniform NPR distribution (Figure 3C).

When cells were treated with PMA (90 min), clusters of NPR

were detected (Figure 3C).

We next asked if induction of NPR clusters by PMA results in

coclusters with AMPAR. This is based on precedent that Narp in-

duces GluR1/2 to form coclusters on heterologous cells (O’Brien

et al., 1999). As anticipated, COS-7 cells cotransfected with

NPR-myc and GluR2-HA without PMA treatment exhibited dif-

fuse NPR and GluR2 staining (Figure 3D). By contrast, COS-7

cells treated with PMA exhibited coclusters of NPR and GluR2-

HA (Figure 3D).
Neuron 57, 858–871, March 27, 2008 ª2008 Elsevier Inc. 861
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Figure 3. TACE Cleaves NPR and Promotes Clustering with AMPAR

(A–B) HEK293T cells were transfected with NPR-myc transgene. Two days after transfection, medium was replaced with drug and vehicle. At the indicated time

points, samples of medium were removed. At the end of the time course, cells were lysed. Lysates and medium were then analyzed by Western blot analysis with

Ab 4450. (A) PMA (150 nM) stimulates generation of LFC- and CTF-NPR in the medium of transfected HEK293T cells. Generation of LFC- and CTF-NPR is in-

hibited by TAPI-2 (50 mM). (B) Cotransfection of HEK293T cells with siRNA-targeting human TACE (TACE (h) siRNA) reduces PMA (150 nM) stimulated generation

of LFC-NPR and CTF-NPR. NPR cleaved products are restored by cotransfection of mouse TACE (TACE (m)) cDNA. Lysates were probed with anti-TACE to

confirm knockdown and expression of TACE as well as anti-b-actin as loading control.

(C) Representative images of live anti-myc-stained NPR-myc transfected COS-7 cells 90 min after treatment with PMA (150 nM) or vehicle. Scale bar = 5 mm.

(D) Representative images of live Ab 4450 and anti-HA stained COS-7 cells cotransfected with wtNPR-myc and GluR2-HA 90 min after treatment with PMA

(150 nM) or vehicle. Magnified regions of PMA treated cells (boxed) are provided on the right. Scale bars = 5 mm.
LFC-NPR Coclusters with AMPAR in Cultured
Hippocampal Neurons, Both on the Cell Surface
and Internally, following DHPG Treatment
To evaluate the localization of endogenous LFC-NPR as well as

the regulation of its production by Site A cleavage in neurons, we

generated a cleavage site selective antibody against LFC-NPR

(Ab LFC-NPR) by using a synthetic peptide that mimics the

novel epitope at the N-terminus of LFC-NPR (see Experimental

Procedures and Figure 1A). When Ab LFC-NPR was used to

blot C-terminal-tagged NPR-myc-expressed in HEK293T cells,

it selectively detected a �60 kDa protein that was enriched in

the medium relative to lysates, while the anti-myc detected NPR

equally in both fractions (Figure S5A). Ab LFC-NPR detected

a protein that migrates at �60 kDa that superimposes with

LFC-NPR detected by Ab 4450 in brain lysates from WT mouse

forebrain (Figure S5C), and that was absent from brain lysates

prepared from NPR�/� (NPR KO) mouse (Figure S5B). These
862 Neuron 57, 858–871, March 27, 2008 ª2008 Elsevier Inc.
observations confirm that Ab LFC-NPR selectively detects

LFC-NPR.

We examined the possibility that LFC-NPR associates with

AMPARon the surfaceof neurons. Culturedhippocampalneurons

were transfected with GluR1 tagged with N-terminal extracellular

a-bungarotoxin (BTX)-binding site (BBS) (Sekine-Aizawa and

Huganir, 2004). Surface GluR1-BBS and native LFC-NPR were

then visualized by live application of rhodamine-linked BTX and

Ab LFC-NPR. Labeling was performed at 10�C to limit internaliza-

tion. Live staining revealed coclusters of LFC-NPR and GluR1-

BBS on the surface of cultured hippocampal neurons (Figure 4A).

These findings indicate that LFC-NPR colocalizes with surface

AMPAR. Theabsenceof LFC-NPR inmedium of neuronal cultures

and labeling on the cell surface indicates that it remains adherent

to the neuronal cell surface, like Narp and NP1 (Xu et al., 2003).

We next assessed whether LFC-NPR colocalizes with AMPAR

after endocytosis by using an acid strip immunocytochemical
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Figure 4. LFC-NPR Colocalizes with Inter-

nalized AMPAR at Synapses

(A) GluR1-BBS transgene colocalizes with endog-

enous LFC-NPR clusters in cultured hippocampal

neurons (DIV 14).

(B) Internalized GluR1-BBS and endogenous LFC-

NPR colocalize in cultured hippocampal neurons

(DIV 14) 45 min after DHPG (50 mM) treatment.

Scale bar = 10 mm.

(C–E) Sections of hippocampus ([C], CA1 stratum

radiatum; [D], CA3 stratum lucidum) or cerebellar

molecular layer (E) labeled with Ab LFC-NPR (10

nm gold), single-labeled (C–E). Gold labeling (ar-

rowheads) is in various tubulovesicular structures

in the presynaptic terminal (D) and postsynaptic

spine (C and D). Labeling for LFC-NPR is also as-

sociated with the endosomal complex found in the

dendrite shaft near the base of a spine (asterisk in

[C] and [E]). Inset in (E) shows labeling in a vesicle

(appears to be partly clathrin coated) that probably

is newly endocytosed from the adjacent cell mem-

brane (an unidentified process in contact with the

side of an axon terminal in the cerebellum).

(F–I) Sections of the hippocampus CA1 stratum

radiatum (F, G, and H) and CA3 stratum lucidum

(I) synapses double labeled for LFC-NPR (Ab

LFC-NPR; 10 nm gold) and either GluR2/3 (F, G,

and H) or GluR2 (I) (5 nm gold), illustrating colocal-

ization (arrowheads) of labeling in postsynaptic tu-

bulovesicular organelles, including some distinc-

tive endosomes (asterisk in [G] and [I]). Labeling

for LFC-NPR colocalizes with AMPAR labeling as-

sociated with postsynaptic membrane and adja-

cent cytoplasm as well as synaptic cleft. The syn-

apse in (G) is an interneuron dendrite shaft

synapse with an oblique synaptic cleft, and those

in (F), (H), and (I) are synaptic spines. Scale bar

(D) is 100 nm in (C) and (D), 125 nm in (E) and inset,

and 50 nm in (F). Scale bar (I) is 100 nm in (G)–(I).
staining protocol (Carroll et al., 1999) (see the Supplemental

Experimental Procedures). Consistent with published results

(Snyder et al., 2001), transient application of DHPG, a selective

agonist for mGluR1/5 receptors, evoked endocytosis of GluR1-

BBS (Figure 4B). Internalized puncta of LFC-NPR and GluR1-

BBS colocalized in discrete puncta within dendrites (Figure 4B),

supporting the notion that LFC-NPR and AMPAR colocalize in

endosomes. In support of this hypothesis, NPR colocalized

with EEA1, a marker for early endosomes (Figure S7A). Finally,

internal LFC-NPR punctae often colocalized with PSD-95 (Fig-

ure S7B), suggesting that the vesicles play a role in trafficking

to or from the synapse.

LFC-NPR Colocalizes with AMPAR in Vesicles
at Synapses in Brain
We performed double immunogold labeling with Ab LFC-NPR

and antibodies to AMPAR to assess if these proteins colocalize

in postsynaptic endosomes in vivo. We were unable to use

a monoclonal antibody to GluR1 for double labeling and, there-

fore, used antibodies to GluR2. Ab LFC-NPR immunoEM ex-

hibited gold labeling in tubulovesicular and vesicular structures

in presynaptic terminals and postsynaptic spines in the CA1

and CA3 regions of the hippocampus (Figures 4C, 4D, 4F, and
4G–4I) and in the Purkinje spines of the cerebellar cortex

(Figure 4E). Labeling was also associated with distinctive endo-

somal complexes in the dendrite adjacent to the spine synapse

(Figures 4C, 4E, 4G, and 4I) and in other endosomal structures

(Figure 4E, inset). In double labeling for LFC-NPR and AMPAR,

colocalization was evident in the postsynaptic membrane and

endosomal structures (Figure 4F–4I).

Cleavage of NPR Is Regulated by mGluR1/5
in Cultured Neurons
We next used Ab LFC-NPR to examine the possibility that

mGluR1/5 might regulate cleavage of NPR. mGluR1/5 activates

PKC via phospholipase C and the production of diacylglycerol

(DAG) and inositol triphosphate (IP3) that releases intracellular

Ca2+. Cultured cortical neurons (�DIV 14) were treated with

DHPG for 5 min and then returned to control medium for intervals

of 0 to 90 min. Ab LFC-NPR detected a �60 kDa band from

lysates that increased over time after stimulation with DHPG

(Figure 5A). Ninety minutes after DHPG, levels of LFC-NPR

increased by 60.7% ± 2.5% (Figure 5A). No specific band was

detected in the medium by Ab LFC-NPR or other NPR Abs (not

shown). Pretreatment of cultured neurons with TAPI-2 blocked

the DHPG-stimulated increase in LFC-NPR (Figure S8). These
Neuron 57, 858–871, March 27, 2008 ª2008 Elsevier Inc. 863
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Figure 5. mGluR1/5-Dependent LTD in Neuronal Culture Requires NPs and TACE-like Activity

(A) Representative Western blot with Ab LFC-NPR of lysates from primary cortical cultures at indicated time points after treatment with DHPG (50 mM). Quanti-

fication of band intensity at indicated time points compared to control (mean ± SD, n = 3 paired animals, *p < 0.05).

(B) Representative Western blot of biotinylated surface GluR1 from primary cortical cultures probed with C-terminal GluR1C antibody 45 min after 5 min treatment

with DHPG (50 mM) ± TAPI-2 (50 mM treated 20 min before DHPG stimulation). Quantification of band intensity ratio of surface GluR1 after DHPG treatment to

vehicle control (mean ± SD, n = 3, *p < 0.05).

(C) Representative Western blot of biotinylated surface LFC-NPR from primary cortical cultures 45 min after 5 min treatment with DHPG (50 mM) ± TAPI-2 (50 mM).

Quantification of band intensity ratio of treated surface to control surface LFC-NPR (mean ± SD, n = 3, *p < 0.05).

(D) Representative Western blot of biotinylated surface GluR1 from WT and NP TKO primary cortical neurons 45 min after treatment with DHPG (50 mM).

Quantification of ratio of surface GluR1 after DHPG treatment to vehicle control (mean ± SD, n = 4, *p < 0.05).

(E) DHPG (50 mM)-stimulated surface GluR1 loss in cultured hippocampal neurons (DIV 14) is blocked by treatment with TAPI-2 (50 mM). See Figure 5H for

quantification. Scale bar = 10 mm.

(F) DHPG (50 mM)-stimulated surface GluR1 loss is impaired in neuronal cultures derived from NP TKO. See Figure 5I for quantification. Scale bar = 10 mm.

(G) DHPG induced GluR1 endocytosis is impaired in NP TKO hippocampal neurons compared to WT. Internalized GluR1 was measured ± DHPG (50 mM) at 5 min

(not shown), 15 min (not shown), and 45 min by using acid strip protocol to visualize internalized labeled GluR1. See Figure 5J for quantification.

(H) Quantification of surface GluR1 puncta density after vehicle control or DHPG stimulation ± TAPI-2. The mean surface GluR1 puncta density per unit length of

dendrite was calculated for each treatment and expressed as a ratio (DHPG/vehicle control). These ratios are compared ± TAPI-2 (mean ± SEM; n > 14;

*p < 0.0001).

(I) Quantification of density of surface GluR1 per unit length after vehicle control or DHPG stimulation cultured neurons from WT and NP TKO mice. Ratio of DHPG/

vehicle control was calculated as described above (mean ± SEM; n > 66; *p < 0.001).

(J) Quantification of internalized GluR1 density per unit length after vehicle control or DHPG stimulation in cultured neurons from WT and NP TKO mice at indicated

time points (mean ± SEM; 5 min, n > 110; 15 min, n > 160; 45 min, n > 36; ***p = 0.002; **p = 0.004; *p = 0.04).
864 Neuron 57, 858–871, March 27, 2008 ª2008 Elsevier Inc.



Neuron

mGluR1/5-LTD Requires NPR Cleavage by TACE
results support the hypothesis that NPR undergoes TACE cleav-

age in neurons that can be regulated by mGluR1/5. They also es-

tablish that there is a low but detectable basal level of LFC-NPR

on the surface of cultured neurons (Figure S6).

mGluR1/5-Dependent AMPAR Endocytosis in Cultured
Neurons Requires TACE and NPs
Activation of mGluR1/5 using DHPG in neurons produces a rapid

and sustained reduction of surface AMPAR that represents a cel-

lular model of LTD (Huber et al., 2001; Snyder et al., 2001; Xiao

et al., 2001). Since NPR processing is induced by mGluR1/5 stim-

ulation, and LFC-NPR colocalizes with internalized AMPAR, we

examined the role that NPR processing might play in mGluR1/

5-dependent trafficking of AMPAR. We assayed cell-surface ex-

pression of GluR1 in cultured cortical neurons 45 min after DHPG

treatment by using the soluble biotinylating reagent to enrich sur-

face proteins (Figure 5B). As reported previously (Snyder et al.,

2001), surface GluR1 was reduced 45 min after DHPG treatment

compared to vehicle control treated cultured cortical neurons

(74.1% ± 2.2% of vehicle control; Figure 5B). The effect of

DHPG on surface GluR1 was blocked by pretreatment with

TAPI-2 (102.4% ± 4.9% of vehicle control) (Figure 5B), suggest-

ing that TACE activity is necessary for DHPG-mediated reduction

of cell-surface GluR1. Using the same technique, we next exam-

ined DHPG-mediated trafficking of LFC-NPR. Similar to GluR1,

surface LFC-NPR was reduced after DHPG treatment (84.3% ±

7.2% of vehicle control; Figure 5C). These changes in LFC-

NPR were blocked by pretreatment of cultures with TAPI-2

(108.9% ± 16.0% of vehicle control; Figure 5C).

To examine the role of NPs in mGluR1/5-mediated AMPAR

surface expression, we compared surface GluR1 in neurons cul-

tured from WT mouse and NP TKO mouse cortex after DHPG

treatment. WT neurons exhibited a significant reduction in sur-

face GluR1 45 min after DHPG treatment (46.3% ± 8.3% of vehi-

cle control; Figure 5D). By contrast, there was no change in sur-

face GluR1 in NP TKO after treatment with DHPG (98.4% ± 9.7%

of vehicle control).

An immunocytochemical approach was employed to validate

the biochemical findings. Cultured hippocampal neurons (DIV

14) were treated with DHPG for 5 min. In parallel studies, we

found that addition of an mGluR5 allosteric potentiator 3, 30-

diflourobenzaldazine (DFB) (O’Brien et al., 2003) 5 min before

DHPG stimulation increased the consistency of the DHPG-

evoked response. Neurons were live labeled with GluR1 N-termi-

nal-specific antibody 45 min after DHPG treatment. Consistent

with our results using biochemistry, surface GluR1 puncta den-

sity was reduced in DHPG treated neurons (47.6% ± 8.5% of ve-

hicle control; Figures 5E and 5H). There was little change in sur-

face GluR1 puncta density after DHPG treatment if neurons were

pretreated with TAPI-2 (84.7% ± 12.6% of vehicle control; Fig-

ures 5E and 5H). Surface GluR1 puncta density was also exam-

ined in cultured neurons from NP TKO and WT mice. Again, sur-

face GluR1 puncta density was reduced in DHPG-treated

neurons derived from WT mice (68.5% ± 6.0% of vehicle control;

Figures 5F and 5I), while surface GluR1 puncta density was un-

changed by DHPG treatment in neurons cultured from NP TKO

mice (113.4% ± 6.3% of vehicle control; Figures 5F and 5I).

These immunocytochemistry experiments confirm the require-
ment of TACE activity and NP expression in mGluR1/5-mediated

AMPAR cell-surface reduction.

We examined internalization of AMPAR in neurons derived

from NP TKO and WT mice by using an acid-strip immunocyto-

chemical staining protocol (Carroll et al., 1999). Consistent with

previous results (Snyder et al., 2001), DHPG treatment evoked

an increase in internalized GluR1 in neurons derived from WT

mice (Figures 5G and 5J). Internalized GluR1 was maximal within

5 min after addition of DHPG. This decreased at later time points

(15 min and 45 min) presumably due to cycling of labeled GluR1

internalized through the internalized pool and reinsertion into the

membrane. By contrast, DHPG treatment did not increase GluR1

internalization in neurons from NP TKO mice (Figures 5G and 5J).

The largest difference in DHPG induced GluR1 internalization

density between WT and NP TKO neurons was observed at

the earliest time point (5 min). This suggests that NPs are

required for mGluR1/5-dependent rapid endocytosis of GluR1.

mGluR1/5-Dependent Hippocampal LTD
Requires TACE and NPs
To examine the hypothesis that regulated cleavage of NPR plays

a role in synaptic AMPAR trafficking, we examined the Schaffer

collateral-CA1 synapse since it exhibits reliable mGluR1/5-de-

pendent LTD that is mediated by postsynaptic AMPAR internal-

ization (Camodeca et al., 1999; Fitzjohn et al., 1999; Huber et al.,

2000; Kemp and Bashir, 1999; Palmer et al., 1997; Snyder et al.,

2001). Using field-potential recording, we examined a chemical

form of mGluR1/5-dependent LTD in the CA1 region of WT

mouse (3–4 week old) hippocampal slices. Application of the

mGluR1/5 agonist DHPG (50 mM for 5 min) elicited a biphasic

effect: a large depression of evoked field excitatory postsynaptic

potential (fEPSP) slope during DHPG exposure, followed by

a smaller depression of fEPSP slope that remained after washout

(72% ± 3.0% of baseline at t = 76 min, n = 11; Figure 6A). This is

similar to previous reports (Camodeca et al., 1999; Fitzjohn et al.,

1999; Huber et al., 2001; Palmer et al., 1997).

To assess the role of TACE in mGluR1/5-dependent LTD, two

different inhibitors were used: GM6001 and TAPI-2. Treatment of

slices with GM6001 or inactive GM6001 control compound (4 mM

for 15 min starting 10 min before onset of DHPG) and TAPI-2 (50

mM for 20 min, starting 15 min before onset of DHPG) did not alter

basal fEPSP slope or probability of release as indexed by paired-

pulse ratio (PPR) (Figure S9A) and had no effect on the initial,

phasic EPSP depression during DHPG treatment. However,

GM6001 completely blocked DHPG-induced LTD measured at

t = 76 min (102% ± 5.6%, n = 6; p < 0.01; Figure 6A), while appli-

cation of the inactive GM6001 control compound (4 mM) failed to

do so (71% ± 4.6% of baseline, n = 4; Figure 6A). Additionally,

TAPI-2, an inhibitor of TACE, effectively blocked DHPG-induced

LTD measured at t = 76 min (95% ± 1.5% of baseline, n = 6;

p < 0.01; Figure 6A). These results suggest that TACE activity

is necessary for mGluR1/5-dependent hippocampal LTD.

We next examined chemical mGluR1/5-dependent LTD in the

hippocampal slices prepared from WT, NPR KO, and NP TKO

mice. Presynaptic function and basal synaptic transmission

in hippocampal slices prepared from NPR KO and NP TKO at

the Schaffer collateral-CA1 synapse exhibited no differences

compared to WT as indexed by PPR and fiber volley/fEPSP
Neuron 57, 858–871, March 27, 2008 ª2008 Elsevier Inc. 865



Neuron

mGluR1/5-LTD Requires NPR Cleavage by TACE
slope functions, respectively (Figures S9B and S9C). Moreover,

the initial DHPG-induced depression of fEPSP slope was identi-

cal in WT, NPR KO, and NP TKO slices (Figure 6B). However,

DHPG-induced LTD was significantly impaired in slices prepared

from both NPR KO and NP TKO mice (96% ± 2.5% n = 7;

p < 0.01; 86% ± 4.1% n = 9; p < 0.01, respectively) when com-

pared to wild-type mice (60% ± 3.7% n = 13; Figure 6B).

We next examined a synaptically induced form of mGluR1/5-

dependent LTD at the Schaffer collateral-CA1 synapse. Paired-

Figure 6. mGluR1/5-Dependent LTD at the Schaffer-CA1 Synapse

Requires NPR and TACE-like Activity

(A) DHPG induced mGluR1/5-dependent LTD is blocked by general MMP

inhibitor GM6001 (4 mM) and TACE inhibitor TAPI-2 (50 mM). Single represen-

tative traces from before (�10 min) and after (+76 min) DHPG are shown.

All scale bars = 0.5 mV, 10 ms. All points represent the mean ± SEM of the

corresponding group.

(B) DHPG-induced mGluR1/5-dependent LTD is absent in NPR KO and NP

TKO. Representative single traces from before (�15 min) and after (+75 min)

DHPG are shown.

(C) PP-1Hz-induced mGluR1/5-dependent LTD is blocked by TAPI-2 (50 mM)

and is absent in NP TKO and NPR KO mice. Representative single traces from

before (�10 min) and after (+50 min) are shown.
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pulse stimulation repeated at 1 Hz for 15 min (PP-1Hz) at the

Schaffer collateral-CA1 synapses produced an mGluR1/5-de-

pendent form of LTD (Huber et al., 2000; Kemp and Bashir,

1999). Using field recordings in WT hippocampal slices, PP-

1Hz-induced LTD, consistent with previous studies (80% ±

2.2% of baseline at t = 50 min; n = 10; Figure 6C). Pretreatment

of WT slices with TAPI-2 (50 mM) blocked PP-1Hz induced LTD

(102% ± 5.6% of baseline at t = 50 min; n = 4; p < 0.01; Figure 6C).

Finally, PP-1Hz-induced LTD was absent in NPR KO slices

(92% ± 4.4% of baseline at t = 50 min; n = 7) and NP TKO slices

(96% ± 1.0% of baseline at t = 50 min; n = 6; p < 0.01).

mGluR1-Dependent LTD in Cultured Cerebellar Purkinje
Cells Is TACE and NP Dependent
Previous work has shown that LTD in Purkinje cells cultured from

embryonic mouse cerebellum requires activation of mGluR1, the

only mGluR1/5 expressed in Purkinje cells, and LTD is expressed

postsynaptically as a reduction in surface AMPA receptors (Aiba

et al., 1994; Chung et al., 2003; Leitges et al., 2004; Linden, 2001;

Matsuda et al., 2000; Steinberg et al., 2006; Wang and Linden,

2000). Here, we have examined LTD by using a purely postsyn-

aptic model in which iontophoretic test pulses of glutamate are

applied to voltage-clamped Purkinje cells in culture. Following

a baseline recording period, LTD was induced by pairing six 3

s long depolarizing steps to 0 mV with six glutamate test pulses.

When test pulses were resumed after pairing, LTD of the gluta-

mate-evoked inward current was evident (52% ± 9.0% of base-

line at t = 40 min, n = 7 cells; Figure 7A), as has been previously

reported. When these experiments were repeated in cultures de-

rived from NPR KO mice (98% ± 8.6% of baseline, n = 6) or NP

TKO mice (108% ± 9.3% of baseline, n = 8), LTD was absent

(Figure 7A). As a test of the specificity of the NPR KO interruption

of LTD, a rescue experiment was attempted. NPR KO Purkinje

cells were subject to biolistic transfection with a plasmid driving

strong expression of wtNPR. This manipulation succeeded in

restoring LTD to near-WT levels (61% ± 7.6% of baseline,

n = 6; Figure 7A).

To assess the role of TACE in cerebellar LTD, TAPI-2 (10 mM)

and GM6001 (1 mM) were used. Both of these treatments pro-

duced a complete blockade of LTD induction (112% ± 8.6%

and 106% ± 8.4% of baseline at t = 40 min, respectively, n = 7

for both groups; Figure 7B). However, application of the inactive

GM6001 control compound (1 mM) failed to do so (48% ± 9.8% of

baseline, n = 7; Figure 7B). This finding was confirmed by a TACE

knockdown strategy by using biolistic transfection of siRNA

directed against mouse TACE (>36 hr before recording; see

Figure S10 for siRNA confirmation). Mouse TACE siRNA-treated

Purkinje cells showed no LTD (Figure 7C; 111% ± 9.3% of base-

line at t = 40 min, n = 8), while Purkinje cells treated with a control

scrambled siRNA showed robust LTD (54% ± 7.9% of baseline,

n = 6), comparable to that seen in untreated cells.

If TACE cleavage of NPR is required for LTD induction, then

perhaps the TACE cleavage product, LFC-NPR, could rescue

LTD induction when overexpressed in NPR KO Purkinje cells.

This was not the case: LTD induction failed in this configuration

(106% ± 6.2% of baseline at t = 40 min, n = 8; Figure 7D). In

control experiments, neither LFC-NPR nor full-length NPR

altered LTD induction when expressed in WT Purkinje cells
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Figure 7. mGluR1-Dependent LTD in Cul-

tured Cerebellar Purkjine Neurons Requires

NPR and TACE

(A) LTD experiments in Purkinje cells derived from

mice harboring mutations in NP genes. Test stimuli

are iontophoretic pulses of glutamate. Following

a baseline recording period, LTD was induced by

six, 3 s long depolarizing steps to 0 mV, each

paired with a glutamate test pulse. This is indi-

cated by the horizontal bar at t = 0 min. Exemplar

current traces are single, unaveraged records

corresponding to the points indicated on the

time-course graph. Scale bars = 50 pA, 1 s. WT

(n = 7 cells); NP TKO (n = 8 cells); NPR KO (n = 6

cells); NPR KO, wtNPR transgene (n = 6 cells).

(B) LTD experiments in WT Purkinje cells treated

with TACE inhibitors. Scale bars = 30 pA, 1 s.

TAPI-2 (n = 7 cells); GM6001 (n = 7 cells);

GM6001 control compound (n = 7 cells).

(C) LTD experiments in WT Purkinje cells treated

with siRNA directed against mouse TACE. Scale

bars = 100 pA, 1 s. TACE (m) siRNA (n = 8 cells);

scrambled siRNA (n = 6 cells).

(D) LTD experiments in Purkinje cells transfected

with either full-length NPR or LFC-NPR. Scale

bars = 100 pA, 1 s. WT, NPR transgene (n = 5

cells); WT, LFC-NPR transgene (n = 7 cells); NPR

KO, LFC-NPR transgene (n = 8 cells). Error bars

represent SEM.
(51% ± 8.7%, n = 7 and 55% ± 7.7%, n = 5, respectively; Fig-

ure 7D). This suggests that the action of NPR cleavage by

TACE, not merely the LFC-NPR product, is required for LTD.

Efforts to identify point mutants of NPR that are resistant to

TACE cleavage were not successful. Precedent indicates that

MMP cleavage is regulated by interactions outside the site of

cleavage. For instance, ADAM10 cleaves Ephrin-A5 only when

Ephrin-A5 is bound to EphA3, presumably by interaction of

ADAM10 with the ligand-binding domain of EphA3 (Janes et al.,

2005). Our model incorporates the failure of LFC-NPR to rescue

mGluR1-dependent LTD by proposing that the regulated cleav-

age must occur at local sites of mGluR1/5 signaling (see Figure 8).

Finally, none of these genetic manipulations of NPs or TACE

appeared to affect basal synaptic strength as indexed by mEPSC

amplitude and kinetics (Table S1). Drugs and genetic manipula-

tions can sometimes impact cerebellar LTD induction through

their side effects on either mGluR1 function or voltage-sensitive

Ca2+ channel function. None of the manipulations herein affected

either depolarization-evoked or DHPG-evoked dendritic Ca2+

transients (Table S1). Furthermore, when LTD was induced chem-

ically, by bath application of the PKC activator phorbol-12,13-di-

acetate (PDA, 200 nM), a process that bypasses the initial signals

for LTD induction, the same pattern of LTD blockade and rescue

was seen with NP and TACE manipulations (Figure S11). Taken

together, these findings indicate that induction side effects

cannot explain the observed blockade and rescue of LTD.

DISCUSSION

A Model of Regulated NPR Cleavage in LTD
The present findings demonstrate that NPR, and its regulated

cleavage by TACE, are essential for group 1 mGluR1/5-depen-
dent LTD (Figure 8). Several steps in the process are experimen-

tally defined. mGluR1/5 induces the cleavage of NPR, and this is

blocked by TACE inhibitors. Cleaved NPR undergoes rapid in-

ternalization and colocalizes with AMPAR in postsynaptic vesic-

ular structures that are confirmed by immunoEM. mGluR1/5

Figure 8. NPs Exert Bifunctional Control of Synaptic AMPAR via the

Regulated Action of TACE

Consistent with previous models, NPs can act as synaptogenic agents by re-

cruiting AMPAR to synapses (Xu et al., 2003; Sia et al., 2007). However, upon

activation of TACE, consequent to mGluR1/5 or other signaling events, TACE

cleaves NPR and enables NPR with associated NPs to cluster and cocluster

AMPAR at the site of TACE activity and thereby increase the rate of AMPAR

endocytosis. This process is essential for durable LTD.
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stimulation results in accelerated AMPAR endocytosis and a re-

duction of steady-state AMPAR levels, and both of these pro-

cesses are blocked by TACE inhibitors and are absent in NP

TKO neurons. Finally, mGluR1/5-dependent LTD is blocked by

TACE inhibitors and is absent or dramatically reduced in neurons

derived from mice lacking NPR. Our model envisions that the

transmembrane domain of NPR prevents its being incorporated

into endosomes. Cleavage of NPR allows it, together with linked

NPs and their associated pool of AMPAR, to enter endosomes,

and thereby increases the efficacy of AMPAR endocytosis.

This mechanism appears to be broadly relevant at excitatory

synapses since similar responses are evident at both the hippo-

campal Schaffer collatoral-CA1 synapse and in Purkinje cells in

primary culture.

MMPs and Synaptic Plasticity
Our model implicates the MMP TACE in mGluR1/5-dependent

LTD, a cellular model for synaptic plasticity that is thought to un-

derlie learning and memory. Our data suggest that TACE is nec-

essary and sufficient to cleave NPR. The possibility that other

members of the ADAM family of MMPs may play a direct or indi-

rect role in cleavage of NPR can not be excluded. Other ADAM

candidates include ADAM10, which is localized at synapses

by interaction with synapse-associated protein-97 (SAP97),

an AMPAR associated protein that is involved in trafficking of

AMPAR (Marcello et al., 2007; Mauceri et al., 2004). Additionally,

other ADAMs may play a role in the proper targeting, localization,

and/or complex formation of NPR, mGluR1/5, and AMPAR at

specific sites of synapses. For example, ADAM22, a catalytically

inactive ADAM, associates with the postsynaptic complex of

PSD-95 and stargazin, a complex that has also been described

to regulate AMPAR trafficking (Fukata et al., 2006).

MMPs, in addition to TACE, have been implicated in synaptic

plasticity. MMP-9 KO mice exhibit impairments in LTP in hippo-

campal slices that can be rescued by addition of recombinant

MMP-9 (Nagy et al., 2006). Additionally, MMP-9 KO mice exhibit

behavioral impairments in associative learning (Nagy et al.,

2006). MMP protein expression is reported to be regulated by

activity, and protein localization may be regulated in part by ac-

tivity-dependent localization of MMP mRNA (Konopacki et al.,

2007). The specific upstream pathways that activate MMPs

and downstream cleavage targets that mediate expression of

synaptic plasticity are not well understood. The observations

that mGluR1/5-activated TACE cleavage of NPR is required for

expression of mGluR1/5-dependent LTD provide an important

precedent.

mGluR1/5 and AMPAR Trafficking
The molecular mechanisms governing mGluR1/5-dependent

LTD are perhaps best understood in Purkinje cells. mGluR1 re-

ceptors activate a Ca2+ signaling cascade that activates PKC

(Bear and Linden, 2000; Crepel and Krupa, 1988; Ito, 2002; Kho-

dakhah and Armstrong, 1997; Linden and Connor, 1991). Of the

various isoforms of PKC, the classical PKCa has been implicated

in mGluR1-dependent LTD by KO and RNAi studies as well as by

a transgenic mouse model expressing a PKC inhibitor (isoform

nonspecific) selectively in Purkinje cells (De Zeeuw et al., 1998;

Goossens et al., 2001; Leitges et al., 2004). One of the actions
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of PKCa is to phosphorylate GluR2 at serine 880, and this has

the effect of reducing its binding to the scaffolding protein

GRIP (Chung et al., 2003). By contrast, the binding of the BAR

domain containing protein PICK1 is not altered by phosphoryla-

tion, and consequently, there results an increase in PICK1 bind-

ing to GluR2 (Jin et al., 2006). The physiological correlate of en-

hanced PICK1 binding is an increase in GluR2 endocytosis rate

and a reduction in steady-state level of synaptic AMPAR (Kim

et al., 2001; Steinberg et al., 2006).

In the hippocampus, mGluR1/5-dependent LTD of the

Schaffer collateral-CA1 synapse shares several mechanistic

similarities to mGluR1-dependent LTD in the Purkinje cells.

Schaffer collatoral/CA1 synapse LTD induced by mGluR1/5 is

mediated by a postsynaptic increase in the rate of AMPAR

endocytosis (Snyder et al., 2001). However, hippocampal

mGluR1/5-dependent LTD is insensitive to PKC-specific inhibi-

tors and is sensitive to phosphatase inhibitors (Schnabel et al.,

1999, 2001). Our current data indicating a role for TACE and

NPR in mGluR1/5-dependent LTD of the Schaffer collateral-

CA1 synapse beg the question of how TACE might be activated

if, as reported, PKC inhibitors do not block LTD. There is sub-

stantial diversity of PKC isoforms and perhaps the critical kinase

is resistant to inhibitors that have been used, including cheler-

ythrine, Ro 31-8220, Go6976 (inhibits PKC a, b, and m isoforms),

and Go6983 (inhibits PKC a, b, g, d, and z isoforms) (Schnabel

et al., 2001). We also note that mGluR1/5-dependent LTD in

the medial perforant path of the dentate gyrus is blocked by

PKC inhibitors (Huang et al., 1999).

Another striking feature of mGluR1/5-dependent LTD at the

Schaffer collateral-CA1 synapse is that its maintenance, after

as brief a time as 10 min, is dependent on de novo protein trans-

lation of preexisting mRNA (Snyder et al., 2001; Huber et al.,

2000). The identity of the translated proteins that are required

for this process is currently unknown. However, Arc/Arg3.1 is

a candidate for such a protein. Its mRNA is robustly induced

and transported to dendrites where is may be locally translated

at synaptic sites (Lyford et al., 1995; Steward et al., 1998). Addi-

tionally, Arc/Arg3.1 interacts with proteins involved in endocy-

totic machinery and modulates trafficking of AMPAR (Chowd-

hury et al., 2006; Shepherd et al., 2006). Currently, the role of

Arc/Arg3.1 in mGluR1/5-dependent LTD is not known but may

involve maintenance of mGluR1/5-dependent LTD expression,

which has been shown to be protein synthesis dependent

(Snyder et al., 2001). It is possible that TACE-dependent cleav-

age of NPR may mediate the early phase of mGluR1/5-depen-

dent LTD, and Arc/Arg3.1 may mediate the maintenance of

LTD expression.

Neuronal Pentraxins and Synaptic Plasticity: Emerging
Insights
Narp and NP1 have previously been implicated in synapse

formation (O’Brien et al., 1999, 2002; Xu et al., 2003; Sia et al.,

2007). Like Narp and NP1, NPR has been shown to be synapto-

genic in an in vitro system that mimics synapse formation where

NPR clusters transfected GluR4 in cultured glia (Sia et al., 2007).

Moreover, the number of GluR4 puncta are reduced in interneu-

rons derived from NP TKO mice compared to WT. The require-

ment of NPR for clustering GluR4 may be limited to interneurons
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by associations with interneuron-specific proteins or by other

mechanisms. In contrast, we did not observe any differences in

basal synaptic strength or AMPAR number between NP KOs (sin-

gle and TKO) and WT preparations examining excitatory neurons

or excitatory neurotransmission (Figure S9 and Table S1). These

results are consistent with a previous report that GluR1 clusters in

NP single KO or TKO hippocampal neurons are identical to WT

(Bjartmar et al., 2006). Glutamatergic synapse function was re-

duced in cultured retinal ganglion cells derived from Narp/NP1

double KO compared to WT but normal in more mature cultures.

Accordingly, the contribution of NPs to synaptogenesis appears

to be developmentally regulated and cell-type specific.

While the physiology of synapse formation and synaptic de-

pression, as revealed in the present study, appear overtly recip-

rocal, the ability of NPs to bind and cluster AMPAR may be central

to both. In synapse formation, NPs may capture and cluster

AMPAR at synapses, while in synaptic depression NPs appear

to capture AMPAR at sites of regulated endocytosis. It is notable

that the present model of NPs in LTD is dependent on NPR, which

shows a marked developmental increase during the second and

third postnatal weeks in the hippocampus (Figure S12). Early in

development, NPR may function primarily to anchor secreted

Narp and NP1 at sites of emerging synapses. In more mature syn-

apses, NPR may play a central role in forming a signaling complex

that is required for mGluR1/5-dependent LTD. Our model pro-

poses that the transmembrane domain is required for proper tar-

geting of NPR or for the formation of a signaling complex that is

present at mature synapses where rapid, mGluR1/5-dependent

cleavage by TACE is required for mGluR1/5-dependent LTD.

Several questions remain to be addressed to fully integrate the

present findings into our current understanding of synaptic plas-

ticity. The signaling complex that serves as a molecular link to

NPR, mGluR1/5, and TACE, or TACE-like proteases, is unknown,

and the absence or presence of this complex may confer the

bifunctional role of NPs in emerging versus mature synapses.

Moreover, physiological interactions as well as epistatic analysis

of NPs with Arc/Arg.1, PICK1, and proteins that mediate clathrin-

dependent endosome formation remain to be defined. NPs are

present in many compartments of the spine including the

presynaptic compartment (Xu et al., 2003; and see Figure 4),

suggesting that they may contribute to forms of plasticity in

addition to those described here, such as synapse elimination

(Bjartmar et al., 2006), maintenance of pre- to postsynaptic ratio,

or bidirectional signaling at synapses.

EXPERIMENTAL PROCEDURES

DNA constructs, antibodies, cell culture, transfection, western blot analysis,

co-IP analysis, identification of cleavage sites, immunoelectron microscopy,

immunohistochemistry, immunocytochemistry, cleavage assay, knockdown

of TACE by using siRNA, and statistical analysis are included in the Supple-

mental Experimental Procedures.

Image Acquisition, Analysis, and Quantification

Images of stained heterologous cells were obtained with a Nikon E800 epi-

fluorescence microscope. Images of stained neurons were obtained with an

UltraVIEW spinning disk confocal microscope fitted with a Nikon Eclipse TE

200 microscope. Image analysis was performed with Metamorph imaging

software (Universal Imaging, Downingtown, PA). See the Supplemental Exper-

imental Procedures for details.
Electrophysiology

fEPSPs were recorded from the stratum radiatum of acute rat hippocampal sli-

ces (P21–P28) in response to stimulation of the Schaffer collateral-commis-

sural pathway. LTD was induced by application of mGluR1/5-selective agonist

3,5-dihydroxyphenylglycine (DHPG; 50 mM, 5min) or by a paired-pulse low

frequency stimulation protocol (PP-1Hz: two pulses with 50 ms interstimulus

interval at 1 Hz for 15 min) with D-AP5 (50 mM). Strength of synaptic response

was measured as fEPSPs slope. See the Supplemental Experimental Proce-

dures for details.

Cultures of embryonic mouse cerebellum were prepared as previously

described, and recordings of voltage-clamped Purkinje cells were performed

according to our previously published method (Leitges et al., 2004). LTD was

induced by LTD-inducing pairing stimuli consisting of six, 3 s long depolariza-

tions to 0 mV, each delivered together with a test pulse of glutamate. See the

Supplemental Experimental Procedures for more details and detailed descrip-

tion of methods for Ca2+ imaging and gene delivery.

SUPPLEMENTAL DATA

Supplemental Data include twelve figures, one table, and Supplemental Ex-

perimental Procedures and can be found with this article online at http://

www.neuron.org/cgi/content/full/57/6/858/DC1/.
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