
Received March 11, 2020, accepted March 29, 2020, date of publication April 1, 2020, date of current version April 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984776

Predicting Trial-By-Trial Variation in
Oculomotor Behavior Using Multivariate
Electroencephalography Theta Phase
WOOJAE JEONG 1,2, SEOLMIN KIM 1,2, YEE-JOON KIM 3,
AND JOONYEOL LEE 1,2, (Member, IEEE)
1Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
2Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
3Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34126, South Korea

Corresponding author: Joonyeol Lee (joonyeol@g.skku.edu)

This work was supported by the Institute for Basic Science, South Korea, under Grant IBS-R015-D1. The work of Yee-Joon Kim was
supported by the Institute for Basic Science, South Korea, under Grant IBS-R001-D1.

ABSTRACT When we interact with our environment, there is often a significant amount of variations in our
behavioral responses to incoming sensory input even when inputs are identical. Variations in sensory-motor
behavior can be caused by several factors, including changes in cognitive status and intrinsic neural
variations in the brain. The correct identification of neural sources of behavioral variations is important for
understanding the underlying neural mechanisms of sensory-motor behavior and for practical applications
(e.g., the development of a precise brain-computer interface). However, studies on humans that investigate
the neural sources of the trial-by-trial variation of the sensory-motor behavior are scarce. In this study,
we explored the neural correlates of behavioral variations in smooth pursuit eye movements. We collected
electroencephalography (EEG) activity from 15 participants while they performed a smooth pursuit eye
movement task, wherein they tracked randomly selected visual motion targets that moved radially from the
center of the screen. We isolated neural components that are specific to the trial-by-trial variation of smooth
pursuit latency, speed, and direction using a novel multivariate pattern-analysis technique. We found that the
phase of the spatially distributed multivariate theta oscillation was correlated with the trial-by-trial variation
of pursuit latency and direction. This suggests that the changing patterns of the theta phase across EEG
sensors can predict upcoming behavioral variations.

INDEX TERMS Brain computer interfaces, cognition, cognitive science, correlation, electroencephalogra-
phy, machine learning, multivariate pattern-analysis.

I. INTRODUCTION
In information processing, our brain must tackle random
unwanted noise that originates either from the external envi-
ronment or from within the brain. We exhibit variable motor
behaviors even when the same sensory inputs are encoun-
tered. This occurs in the simplest form of sensory-motor
responses, irrespective of strong intentions to reproduce
the same actions [1]. Some behavioral variations origi-
nate from neural variations inside the brain. Identifying
the source of this neural noise is key to understanding
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trial-by-trial behavioral variations in movements [2]–[4].
The smooth pursuit eye movement, one of the three vol-
untary eye movements (saccades, smooth pursuit, and ver-
gence) of human and non-human primates, is a simple
sensory-guided oculomotor behavior triggered by visual
motion. Previous studies conducted using rhesus monkeys
reported that the correlated neural variations in the mid-
dle temporal visual area (area MT, which is an impor-
tant area for processing sensory motion [5]–[8] and has a
causal relationship with the initiation of smooth pursuit [9]),
can partially account for trial-by-trial variations in smooth
pursuit speed [10], direction [11], and latency [12]. The
frontal eye field smooth eye movement region (FEFSEM),
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which is important for controlling the gain of smooth pursuit
eye movements [13], [14], is known to be involved in the
trial-by-trial variations of smooth-pursuit latency; the cor-
related neural variations in this area can partially explain
the latency variations [15]. Subcortical areas including the
cerebellum [12], [16] and brain stem [12], [17] are also known
to be important for the variation of smooth pursuit initiation,
but those variations are inherited from the neural variation in
cortical areas [10]–[12], [16]–[18].

In humans, the electroencephalography (EEG) imaging
technique is suitable for studying the neural source of behav-
ioral variations because 1) EEG activity would reflect the
brain-wide cortical neural activity, and 2) of its superior tem-
poral resolution (to functional magnetic resonance imaging
techniques, for example). Furthermore, EEG has been widely
used to develop a brain-computer interface [19], [20], thus
the identification of neural sources of behavioral variations
in EEG can contribute to the improvement of this system.
Although there is an increasing need to investigate neural
sources of trial-by-trial behavioral variations, studies based
on the same on humans are scarce partly because the EEG
signal is complex. EEG activity variations can derive from
multiple sources, some of which are the true sources of spe-
cific behavioral variations, while others result from variation
in the global internal states of the brain [21]. Besides, there
may be other unexpected and uncontrolled sources, i.e. mus-
cle activation-induced artifacts, cardiac artifacts or movement
artifacts. Therefore, it is important to isolate the EEG activity
variations that are specific to the variations in the behavior
of interest. However, it is difficult to do so using traditional
univariate approaches.

In this study, to isolate the EEG activity component spe-
cific to the variation of oculomotor behavioral modes (pursuit
speed, latency, and direction), we directly estimated behav-
ioral variations from the spatially distributed multivariate
EEG activity patterns and searched for the EEG oscillation
components that exhibited a meaningful trial-by-trial rela-
tionship with behavioral variations. We found that only the
phase of theta oscillation (4–8 Hz) could predict variations in
the latency and direction of oculomotor behavior.

II. METHODS
We collected EEG and behavioral data from 21 human par-
ticipants with normal or corrected-to-normal vision. We dis-
carded the data of six participants with poor pursuit eye
movements and noisy EEG data. Among them, five were
excluded because more than 30% of their trials had too-early
saccadic eyemovements, and onewas excluded becausemore
than 50% of the independent components (ICs) were rejected
by the artifact rejection procedure (see Section II D). The
data of the remaining 15 participants were analyzed and are
presented in this paper (three females; 12 males; age range:
21–32 years). A portion of the data used has been pub-
lished in a study in which an unrelated aspect was observed
and analyzed [22]. All participants gave informed consent,
and experimental procedures and methods were approved

by the Institutional Review Board at Sungkyunkwan
University.

A. STIMULI AND TASK DESIGN
Visual stimuli were displayed on a gamma-corrected 20-inch
CRT monitor (Hewlett Packard P1230, Palo Alto, CA, USA)
that was positioned 60 cm away from the participants. The
screen covered a 36.87× 28.07◦ visual field. The spatial reso-
lution of the monitor was 1600× 1200 pixels, and the vertical
refresh rate was 85 Hz. All stimuli were presented on a gray
background (32.7 cd/m2) in grayscale with a luminance range
from 0 to 72.5 cd/m2. All experiments were conducted in a
dark room with the display monitor as the main source of
illumination. Fig. 1A illustrates the task design consisting of
three phases.

FIGURE 1. The task design. A, Human participants were asked to
perform a smooth pursuit eye movement task. The task started when a
fixation point (a yellow dot) appeared in the center of the screen. The
fixation point remained for a uniformly randomized fixation duration
(1100–2100 ms), then disappeared. At the end of the fixation period,
a random dot kinematogram appeared at the center of the screen
replacing the fixation point; then, all dots in the patch moved in a
direction randomly selected from the five directions (0◦, 30◦, 270◦, 300◦,
or 330◦) for 100 ms while the invisible circular patch remained stationary
(local motion). Next, the whole patch and dots moved together in the
same direction as that of the local motion for 600–760 ms.
B, Representative eye speed traces of participant BSW, from 100 ms
before to 400 ms after visual motion onset. Light gray traces show eye
speed in individual trials and the red trace shows the mean across trials.
The black solid line shows the target speed. Trials that contained any
saccadic eye movements in a time-window between −100 and 250 ms
from motion onset were manually discarded. C, Average eye velocity
traces of participant BSW for the five pursuit directions in a Cartesian
coordinate composed of horizontal and vertical velocity components.
D, E, F, Histograms of participant SSK’s pursuit latency (D), speed (E), and
direction (F) from the decomposition analysis. Histograms were made
from the analysis of 1143 trials of SSK’s pursuit behavior. All three
components of smooth pursuit show a substantial amount of trial-by-trial
variations.

1) Fixation period—A small yellow dot (the fixation
point, 0.3 × 0.3◦ in size and 68.2 cd/m2in luminance)
was presented at the center of the screen for a random
duration between 1100 and 2100 ms (a uniform prob-
ability, with 2-ms resolution). Subjects were instructed
to focus on the fixation point and maintain the fixation
within 2◦ of the point during the task.
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2) Local motion period—Immediately after the extinction
of the fixation point, a random dot patch moving at
16 deg/s was presented inside a 4.5◦-diameter circular
aperture centered on the screen. The patch consisted
of 64 black and 64 white dots with 100% contrast,
and its mean luminance was the same as that of the
background. For the initial 100 ms, the invisible cir-
cular aperture was stationary while the dots inside the
aperture moved in one of five directions: 0◦, 30◦, 270◦,
300◦, or 330◦, with 100% coherence.Motion directions
were mainly selected from the fourth quadrant because
most humans deliver better performance at tracking
horizontal and downward motion stimuli than vertical
and upward motion stimuli [23]. Subjects were asked
to track the moving dot patch smoothly.

3) Global motion period—The aperture and dots inside
the aperture moved together for a random duration
of 600–790 ms. The direction and speed of the global
motionwere the same as those of the localmotion. Each
trial was considered successful if subjects tracked the
patch within 5 × 5◦ of the invisible square window
around the moving stimulus smoothly until it stopped
and disappeared. Subjects performed 16–19 blocks
of 80 trials with a 1000-ms inter-trial delay with
1-minute breaks between blocks. Unfinished trials
were discarded. Each participant performed 266.7 trials
per condition and total 1333.3 trials on average.

B. DATA ACQUISITION
Eye movements and EEG were recorded with precise syn-
chronization of stimulus presentation. The acquisition of eye
position and visual stimulus presentation were controlled
through a real-time data-acquisition program (Maestro,
https://site.google.com/a/srscicomp.com/maestro/). Eye posi-
tions were measured using an infrared eye tracker (EyeLink
1000 Plus, SR Research, Ottawa, ON, Canada) with a sam-
pling rate of 1 kHz. EEG signals were recorded using a
64-channel amplifier (BrainAmp, Brain Products, GmbH,
Gilching, Germany) and active electrodes (actiCAP, Brain
Products, GmbH) mounted on an elastic cap. The impedance
of the electrodes was kept under 25 k� during the recordings,
and the sampling rate of the EEG data collection was 5 kHz.
We used separate computers for controlling visual stimuli and
EEG data collection. All behavior-control–related informa-
tion was transmitted to the EEG data collection computer
online through a custom-built hardware interface and digi-
tal input and output (I/O) device for later synchronization.
We used a custom-built photodiode system to guarantee the
precise timing of visual stimuli. All the behavioral and neural
data were aligned to the visual stimulus onset timing reported
from the photodiode system.

C. EYE-MOVEMENT ANALYSIS
To isolate the initiation of smooth pursuit eye movements,
we screened all trials visually and discarded any in which
saccadic eye movements happened in the time window

of −100 to 250 ms relative to the visual stimulus onset
(Fig. 1B). Then, we decomposed the open-loop period of pur-
suit (approximately the first 100 ms of smooth pursuit from
the average pursuit latency; [24], [25]) into speed, direction,
and latency components in individual trials using a method
described previously [11], [12], [26]. Briefly, we averaged
horizontal and vertical velocity traces from all trials in each
direction condition and determined the mean pursuit latency
by visually inspecting the average velocity traces. We rotated
all velocity traces in a polar coordinate so that the rotated
velocities would be averaged to 45◦ for mathematical simpli-
fication without changing the data.We obtained the templates
for the horizontal and vertical components of eye velocity by
averaging eye velocity traces from −20 to 100 ms from the
mean latency. Then, we estimated the two best-fitted scaling
factors (for the horizontal template and the vertical template)
and a latency factor in each trial using the least-squaremethod
(NOMAD algorithm; [27]) as follows:

EHi (1t i) = EHtemplate × a
H
i (1)

EVi (1t i) = EVtemplate × a
V
i (2)

where EHtemplate and E
V
template are the velocity templates, EHi

and EVi are horizontal and vertical eye velocity estimates for
trial i, and1t i is the latency estimate for trial i. aHi and aVi are
the scaling factors of horizontal and vertical eye velocity
components in trial i. When average eye velocity traces are
rotated to 45◦, EHtemplate≈E

V
template. Therefore, speed (1S i)

and direction (1θ i) estimates for trial i were calculated
from (3) and (4).

1S i = constant ×
√(

aHi
)2
+
(
aVi
)2

(3)

1θ i = tan−1
aVi
aHi

(4)

We included trials in further analyses only if each estimated
function explained more than 50% of data variance to avoid
using unreliable estimates of pursuit parameters. To avoid
including trials with extreme values of speed, direction, and
latency components in the trial-by-trial correlation analysis,
we further excluded outliers (i.e., more than two standard
deviations from the mean for any of the three components,
on average 13% of trials were excluded).

D. PREPROCESSING OF EEG DATA
We preprocessed the recorded EEG data as follows. All pre-
processing and analyses were conducted usingMatlab (Math-
Works, Natick, MA, USA). We used subroutines included in
EEGLab [28] and FieldTrip [29] Matlab toolbox packages
for signal processing. We down-sampled the EEG data from
5 to 1 kHz and applied a high-pass filter with a 0.1-Hz cutoff
frequency for removing slow drifts [30]. We used the Arti-
fact Subspace Reconstruction (ASR) routine [31] to remove
noisy channels and re-referenced all data to the mean [32].
We removed line noise (60, 120, and 180 Hz) using the
cleanlineEEGLab plugin [33]. Then, we applied Independent
Component Analysis (ICA) [34] to remove signals from the
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recorded EEG that were not related to the experiment using
EEGLab implementation ‘‘runica’’ [28]. Finally, we removed
ICs classified as artifacts using the ADJUST EEGLab plu-
gin [35]. We band-pass filtered the preprocessed EEG signal
into theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and
gamma (30–50 Hz). We epoched the preprocessed and fil-
tered signals from−400 to 600 ms relative to the visual stim-
ulus onset in each trial. We applied the Hilbert transformation
of the filtered data to obtain instantaneous power and phase
time courses of each frequency.

To reduce the noise in the time-series data, we obtained
the moving average of 20 ms from −200 to 500 ms relative
to the onset of visual stimulus at 2-ms intervals. When the
event-related potential (ERP) components in the trial-by-trial
correlation analysis were used, baseline activity was obtained
by averaging EEG activity from 100 to 0 ms before the visual
stimulus onset. The baseline activity was subtracted from the
time-dependent EEG activity in each trial. In the analysis
of the phase and power time courses, we did not subtract
the baseline because the on-going oscillatory activity during
the fixation duration could contribute to the trial-by-trial
variation of smooth pursuit eyemovements. (The topographic
plots of the power of theta oscillationwas an exception. In this
case, we converted the power into decibel [dB] using the
average baseline theta power from 100 to 0 ms before the
visual stimulus onset.) Next, we normalized the data in each
channel across trials by converting the EEG activity (ERP and
power) into standard scores (z-score). When we analyzed the
phase time courses, we took the sine and cosine of the phase
and normalized the sine and cosine values individually.

E. LINEAR ESTIMATORS OF SMOOTH PURSUIT VARIATION
We obtained linear estimators of the three components of
smooth pursuit eye movements from the z-scored EEG activ-
ity pattern using a method that is analogous to that used in a
previous study analyzing neural spiking activity [36]. In the
previous study, the information in the temporal dynamics of
spiking activity that contributed to the variation in oculomotor
behavior was considered in the estimators. In this study,
we considered the information present in the EEG activity
pattern across multiple sensors. This approach is analogous to
multiple linear regressions, i.e., estimating regression slopes
across the 64 channels that accounted for the latency, speed,
or direction variations in the smooth pursuit eye movements.
Fig. 2 is a schematic of the data analysis process.

For all trial-by-trial correlation analyses, we used the
‘leave one condition out’ procedure to prevent overfitting. For
example, whenwe obtained a linear estimator of eye direction
on the stimulusmotionwith a 330◦ direction (the center direc-
tion among the five motion direction conditions), we used
trials from the other four directions for estimating the weight
matrix. We repeated this procedure for all other directions.
Each dataset composed of a Ntrials×Nchannels matrix for each
given time point except for the phase time course. In each
given time point, we first conducted principal component
analysis (PCA) of the EEG activity because EEG activities

FIGURE 2. The analysis method. EEG data from the central direction
(330◦) were used as a test set (T) and data from the other directions
(0◦, 30◦, 270◦, and 300◦) were used as the training set (E). We used this
‘leave one condition out’ method for all other direction conditions.
Weights were calculated from neural data E and behavioral data B1.
Linear estimators of behavioral data (R) were obtained by multiplying the
neural data from the test set (T) with the estimated weight (W) from the
training set. Trial-by-trial correlations (Spearman’s rho) between the
behavioral data B2 from the test set and the linear estimators R were
computed.

are correlated across the channels. All subsequent analyses
were conducted on the orthogonalized, principal scores of the
EEG data.We obtained a weight matrix (Ncomponents×1) from
the principal scores of the z-scored EEG data that could best
explain the behavioral variations in a ‘‘least-squared’’ sense
using (5) and (6).

E1 ·W = B1 (5)

Ŵ =
(
ET1 · E1

)−1
· ET1 · B1 (6)

To focus only on the trial-by-trial variations both in behavior
and EEG responses, we converted the latency, speed, and
direction components of smooth pursuit B1 (Ntrials × 1) into
standard scores (z-score) by subtracting the means and divid-
ing by the standard deviations across all trials. E1(Ntrials ×

Ncomponents) contains the principal score of the z-scored EEG
data in a given time point. TheweightmatrixW (Ncomponents×

1) was then estimated from (6). Using the estimated weight
matrix

(
Ŵ
)
, we obtained the linear estimators of speed,

direction, and latency in the test direction by multiplying
the principal scores of the z-scored EEG data from the test
direction condition with Ŵ .

E2 · Ŵ = R (7)

E2 (Ntrials × Ncomponents) contains the principal scores of the
z-scored EEG data for the test direction and R (Ntrials × 1) is
the linear estimator of the three smooth pursuit components.
We computed the trial-by-trial correlations between the linear
estimator of eye movement components from the multivariate
EEG residual activity and the recorded eyemovement compo-
nents (Spearman’s rho). Using this approach, the correlation
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coefficient shall always be positive. Therefore, we used boot-
strap analysis [37] to convert the correlation coefficient into
a standard score to remove any biases when evaluating the
significance of the correlations. We shuffled the trials and
followed the procedures listed in (1), (2), and (3) for esti-
mating the correlation coefficients. We repeated this shuffle
analysis 500 times and generated the ‘‘null distribution’’ of
the correlation coefficient. From the distribution of the shuffle
analysis, we converted the original correlation coefficient
into the z-score. We averaged the z-transformed correlation
coefficients across all participants (n = 15) for each time
point. A cluster-based permutation test was used to evaluate
the significance of correlations [38]. The test was performed
with 10000 permutations using a p-value of 0.05 (two-tailed).

In the analysis of phase time course, we implemented a
slightly different approach from the method described above
because phase angles are not continuous variables. There-
fore, we used the sine and cosine of the phases to predict
the trial-by-trial variation of smooth pursuit eye movements.
Instead of using (5), (6), and (7), we used (8), (9), and (10)
to overcome the discontinuous nature of the phase informa-
tion, utilizing a similar approach implemented in a previous
study [39].

Pcombined ·Wcombined = B1 (8)

where Pcombined =
[
sin θ1 cos θ1

]
,Wcombined =

[
Wsine
Wcosine

]
.

Ŵcombined =
(
PTcombined · Pcombined

)−1
· PTcombined · B1 (9)

Ptest · Ŵcombined = R (10)

where Ptest =
[
sin θ2 cos θ2

]
. θ1 is the instantaneous phase

obtained from a Hilbert transformation in the training condi-
tion, and θ2 is the instantaneous phase in the test condition.

In the typical smooth pursuit experiments, pursuit perfor-
mances in the two outer direction conditions (30◦ and −90◦)
were relatively poor with a smaller number of succeeded
pursuits. Therefore, we only used the correlations calcu-
lated from the three central direction conditions (0◦, −30◦,
and −60◦) for further analysis.

F. PRESENTATION OF THE TOPOGRAPHIC PLOT
OF THE WEIGHT MATRIX
If the analysis described in Section II E was conducted
without applying the PCA on the multivariate EEG activity,
the correlations would be the same as those when the PCA
was applied on the EEG activity. Therefore, we conducted
an identical analysis without applying PCA and calculated
the weight matrix to determine the contributions of each
sensor to the variation in specific oculomotor behavioral
components. Because we took sine and cosine of the phase
time course for correlation analysis, we took the geometrical
mean of the weight matrices for sine and cosine components
following (11).

Wgeomean =

√
W 2
sine +W

2
cosine (11)

We averaged the combined weight matrix across the 15 par-
ticipants and divided each value by the standard deviation to
consider reliability across participants in the topographical
plots.

III. RESULTS
We successfully recorded eye movements and EEG activity
simultaneously from 15 human participants while they were
engaged in a smooth pursuit eye movement task. We found
that phase information in the theta band oscillation (4–8 Hz)
could predict the variation in the direction and latency of
oculomotor behavior.

A. DECOMPOSITION OF SMOOTH PURSUIT
EYE MOVEMENTS
Weasked the human participants to perform a visually-guided
smooth pursuit eye movement task using a random-dot kine-
matogram as a visual target for tracking (Fig. 1A). The
first 100 ms of smooth pursuit eye movements are known
to be guided by visual motion and are free from the influ-
ence of movement-related feedback (open-loop pursuit; [24],
but see [40] as an exception). We first decomposed these
open-loop pursuit responses into three components before we
looked for EEG components that predict behavioral varia-
tions. The obtained latency, speed, and direction components
from the decomposition analysis exhibit a substantial amount
of trial-to-trial variation under identical sensory motion con-
ditions (Fig. 1D, 1E, and 1F). For example, eye directions
sometimes deviated more than 30◦ from the mean and over-
lapped with eye directions from different visual stimulus
conditions (Fig. 1F). Therefore, it is important to understand
and identify the EEG components that are predictive of the
behavioral variation. We developed a novel method (see
Section II E) to isolate the EEG activity pattern that is specific
for the behavioral component of interest.

B. RESIDUAL MULTIVARIATE ACTIVITY PATTERNS OF
EVENT-RELATED POTENTIALS ARE NOT PREDICTIVE
OF VARIATION IN BEHAVIORAL MODES
Before we explored the oscillatory components of the EEG
activity that were predictive of behavioral variations, we first
investigated if the multivariate event-related potentials (ERP,
electrophysiological responses to the stimulus) were predic-
tive of pursuit variation. Fig. 3A presents the mean ERP
time course (averaged across the 17 posterior channels and
15 participants) and the topographical plots that demon-
strate the distribution of ERP activity across the 64 chan-
nels. Fig. 3B–D present the resultant z-scored correlation
time courses for the three behavioral modes, averaged across
participants. Although there were time clusters that were
significantly higher than zero for pursuit latency and direc-
tion variation, a significant correlation (based on the cluster-
based permutation test) was found during the initiation of the
smooth pursuit eye movement (122–132 ms from stimulus
onset for latency, with average pursuit latency ∼100 ms).
A significant correlation was also found after the initiation of
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FIGURE 3. Trial-by-trial correlations between event-related
potential (ERP) and behavioral modes of smooth pursuit eye
movements. A, A grand average ERP time course across posterior
channels (Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7, PO8, Oz,
O1, O2 ) and across the 15 participants. The gray shaded area shows the
standard deviation across participants. An inset figure shows the location
of posterior channels. The three topographical plots show the ERP pattern
across the 64 channels in the three different time windows (0–100 ms,
100–200 ms, and 200–400 ms). B, Z-scored trial-by-trial correlations
between pursuit latency variation and latency estimate from the
multivariate EEG activity. C, Z-scored trial-by-trial correlations between
pursuit speed variation and speed estimate. D, Z-scored trial-by-trial
correlations between pursuit direction variation and direction estimate.
Shaded gray areas show the standard error.

the pursuit was complete when catch-up saccadic eye move-
ments occurred (252–258 ms for latency, and 292–302 ms
for direction). This was significant at p< 0.01 for the cluster
selection and p < 0.05 for the two-sided significance test.
Therefore, these correlations were likely induced by smooth
pursuit eye movements themselves.

C. PHASES OF THETA OSCILLATION ARE PREDICTIVE OF
PURSUIT LATENCY AND DIRECTION VARIATIONS
Next, we investigated if the known oscillatory band activi-
ties were predictive of the pursuit variations. We band-pass
filtered the EEG activity into four frequency bands (theta
4–8 Hz, alpha 8–13 Hz, beta 13–30 Hz, and gamma
30–50 Hz) and applied the Hilbert transformation to extract
instantaneous power and phase time courses. Then, we esti-
mated behavioral modes from multivariate power and phase
time courses. Because phase angles have a discontinuity,
we took sine and cosine values of the phase angles for esti-
mating the behavioral modes (see Section II E and equations
8–10 for detail). Fig. 4A presents the band-pass filtered EEG
in theta frequency (averaged across the 17 posterior channels
and 15 participants) and topographical plots that illustrate the
distribution of theta power across the 64 channels. Fig. 4B–D
presents the z-scored correlation results. We found that the
phase of the multivariate theta oscillatory activity predicted
variations in pursuit latency and pursuit direction. The typical
pursuit latency was ∼100 ms from visual stimulus onset;
therefore, the significant correlations that appeared before
that time must be predictive of the trial-by-trial variation in
smooth pursuit eye movements. Between 66 and 84 ms from
visual stimulus onset, the estimated latency mode from the
theta phase was significantly correlated with pursuit latency

FIGURE 4. Trial-by-trial correlations between phases of theta
oscillation and behavioral modes of smooth pursuit eye movements.
A, A grand average of theta bandpass filtered time course across
posterior channels (Pz, P1, P2, P3, P4, P5, P6, P7, P8, POz, PO3, PO4, PO7,
PO8, Oz, O1, O2) and the 15 participants. Gray shaded areas show the
standard deviation. The three topographical plots show the theta power
distributions across the whole channels in the three-time windows
(0–100 ms, 100–200 ms, and 200–400 ms). Theta power appears to
become stronger after the visual stimlus onset. B, Z-scored trial-by-trial
correlations between pursuit latency variation and the latency estimate
from the phases of multivariate theta oscillation. C, Z-scored trial-by-trial
correlations between pursuit speed variation and the speed estimate.
D, Z-scored trial-by-trial correlations between pursuit direction variation
and the direction estimate. Shaded gray area shows standard error.
Shaded green area shows mean and standard deviation of SSK’s eye
speed traces. Topographies below each correlation plots showed the
average weight matrix across the 15 participants normalized by the
standard deviations. The normalized weight matrixes were averaged on
each significant time clusters for latency, speed, and direction.

variation (performed using the cluster-based permutation test,
using p < 0.01 for cluster selection and p < 0.05 for the
two-sided significance test).

Between 82 and 112 ms from the visual stimulus onset,
the estimated direction mode from the multivariate theta
phase was significantly correlated with the trial-by-trial vari-
ation of pursuit direction. It appears that the multivariate theta
phase is not predictive of pursuit speed variation although
there is a significant time cluster (performed using the
cluster-based permutation test, significance levels as above).
The significant time-cluster overlapped with the on-going
pursuit behavior, and the earliest time of the significant corre-
lation was approximately 70 ms after the eye started moving
(170–202 ms from stimulus onset). Therefore, the signif-
icant correlation was likely to be induced by the pursuit
eye movement itself. Because we found that the pattern of
theta phase variation was indicative of impending smooth
pursuit latency and direction, we identified the sensors that
were important for the trial-by-trial correlations. We took the
geometrical mean of the weight matrix for sine and cosine
components of the phase. Interestingly, the contributions of
each electrode to the behavioral variations were different,
depending on the behavioral mode. For example, in the
weight matrix for pursuit latency variation, posterior channels
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were more dominant before the eye started moving (66–84
ms from visual stimulus onset). However, both anterior and
posterior channels contributed to behavioral direction vari-
ation (82–112 ms from visual stimulus onset). Furthermore,
the contribution of each channel to the same behavioral mode
was different at different times. Anterior channels became
more dominant for the latency correlation after the eye started
moving (148–206 ms from stimulus onset), which suggests
that the underlying neural mechanisms for the trial-by-trial
relationship may be different from each other before and after
the eye begins to move. These differences suggest that the
encodings of behavioral variations in the multivariate EEG
theta phase are temporally dynamic [41] and behaviorally
mode-specific.

We found that only the multivariate phase information in
theta oscillation was predictive of variation in smooth pur-
suit latency and direction. We applied the identical analysis
method on the multivariate phase in alpha, beta, and gamma
oscillations, but none passed the cluster-based permutation
test with the exception of the relationship between multivari-
ate alpha phase and pursuit latency variation. This correlation
appeared far later; thus, it is not predictive of behavioral
variations. We could not find any frequency components that
were predictive of the oculomotor behavioral modes when we
analyzed the power time course (Fig. 5).

IV. DISCUSSION
Our study demonstrates that the multivariate theta phase is
predictive of the variation in smooth pursuit latency and
direction. We devised a method that enabled us to isolate the
EEG activity components that were specific to the variation
of sensory-motor behavioral mode (smooth pursuit latency,
speed, and direction), and successfully identified the oscilla-
tory components that are meaningful for controlling pursuit
latency and direction variations.

Recent studies have employed the multivariate analysis
method on EEG data to understand how EEG activity repre-
sents various stimulus properties. Using the inverted encod-
ing model [42] and others, several studies have shown how
stimulus orientation information is maintained in working
memory [43]–[47] and modeled the effect of attention [48]
on the oriented visual stimulus. A recent study represented
visual and pursuit motion information in multivariate EEG
activity during smooth pursuit eye movements [22]. These
studies all used multivariate pattern analysis to extract the
specific stimulus information of interest (for example, stim-
ulus orientation), which is a step forward in EEG research
and applications. Nonetheless, these studies only focus on the
stimulus information that is represented in the EEG activity
pattern.

We show that there is often a substantial amount of behav-
ioral variation, even if the stimulus condition and intended
movements are the same. Although behavioral response mea-
surements in the smooth pursuit eye movement task are
supposed to be less noisy than other sensory-motor behav-
iors (because it is a simple and reactive one), the measured

FIGURE 5. Trial-by-trial correlations between multivariate EEG
activities in different frequency bands and smooth pursuit latency,
speed, and direction. A–C, Trial-by-trial correlation between power of
multivariate theta oscillation and smooth pursuit latency (A), speed (B),
and direction (C) variation. D–F, Trial-by-trial correlation between powers
and phases of multivariate alpha oscillation and smooth pursuit latency
(D), speed (E), and direction (F) variation. G–I , Trial-by-trial correlation
between powers and phases of multivariate beta oscillation and smooth
pursuit latency (G), speed (H), and direction (I) variation. J–L,
Trial-by-trial correlation between powers and phases of multivariate
gamma oscillation and smooth pursuit latency (J), speed (K), and
direction (L) variation. Gray color showed the z-scored phase correlation
and blue color showed the z-scored power correlations. Gray and blue
shaded areas showed the standard errors.

behavioral variations to the same stimulus sometimes exceed
behavioral differences induced by different visual motions,
as found in this study. Therefore, it is important to isolate
the relevant EEG activity pattern for a specific behavioral
variation. The neural marker of behavioral variation can con-
tribute to improving the signal to noise ratio of EEG activity
decoding, which can be used in the development of a precise
brain-computer interface system for rehabilitation applica-
tions [20]. In this study, we took advantage of the multivariate
pattern analysis of EEG for isolating the neural components
that are specific to the variation of smooth pursuit latency,
speed, and direction. In this novel analysis, we were careful
to obtain robust and reliable correlations. First, we used the
‘leave one condition out’ method to prevent overfitting in the
estimation of the pursuit modes (latency, speed, and direction)
from EEG activity. Second, we used a permutation approach
to avoid any errors or biases in interpreting the significance
of the correlations.

Even if we reliably estimated and found the neural marker
for the behavioral variations, some remaining questions and
issues need to be addressed in the future. First, our method
is ignorant of dynamical interactions across channels and the
role of these dynamics on the behavioral variations. To under-
stand the underlying neural dynamics and connectivities
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across brain areas, we should investigate the temporal dynam-
ics of multichannel EEG activities themselves using mul-
tivariate autoregressive models, for example, state-space
models [49], [50], Granger causality analysis [51], [52],
or dynamical causal modeling [53], [54]. Second, although
we found the neural correlates, we still do not know how
this component is coupled with behavioral variations. It is
intriguing that only the phases of the multivariate theta
oscillation were predictive of the impeding motor behav-
ior. Previous studies have shown that the phase of theta
oscillation has important roles in navigation [55], attentional
sampling [56]–[58], and perception [59], [60]. Some recent
studies demonstrated that hippocampal augmentation of theta
oscillation is associated with movement onset [61], [62].
These results suggest that theta oscillation might have an
important role in motor-related cognitive functions. Another
study showed that theta oscillations are phase-locked to the
onset of the movement, and in this case, the phases were pre-
dictive of perception [39]. Therefore, in our study, the theta
phase might be related to the perception of the pursuit targets
that are tightly coupled to the following eye movements.

The other notable aspect is that we only found significant,
predictive correlations for pursuit latency and direction. The
correlations for speed appeared after the eye started moving,
thus the correlation might have been induced by behavior.
We speculate and note that the predictive role of the multi-
variate theta phase could be because of our task design. In this
study, participants had to predict the timing and direction of
the incoming pursuit target because they did not know when
the target stimulus would appear, and the motion direction
was randomly selected. We used the same speed of 16 deg/s
across the trials in a given day, so there was no uncertainty
regarding the speed of the pursuit target. If the variation of
spatially distributed theta phase has a key role in prediction,
the absence of the correlation in pursuit speed variation can
be explained by this ‘predictive coding’ hypothesis [63]. Con-
sistent with this scheme, previous studies revealed the role of
theta oscillation in predictive control in learning [64]–[66].
If that is the case, the trial-by-trial correlation with the theta
phase will dynamically change depending onwhether the par-
ticipants need a prediction of the incoming sensory stimulus
feature or not. If the speed of the pursuit target is randomized,
the theta phase will become predictive for pursuit speed vari-
ation. This hypothesis remains to be tested in future studies.

V. CONCLUSION
Our study indicates that trial-by-trial variation in oculomotor
behavioral modes can be predicted by the multivariate phase
of theta oscillation. Given that there is a substantial amount
of trial-by-trial variation in behavioral responses and that
the neural components specific to the behavioral errors are
distinct, our study contributes toward a comprehensive under-
standing of the underlying neural mechanisms for smooth
pursuit eye movements in humans. The analysis method
and approach can be broadly applied to other sensory-motor
behaviors. An understanding of neural sources for behavioral

variations in human EEG recordings will facilitate the devel-
opment of a precise brain-computer interface system.
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