
INTRODUCTION

COVID-19, which is caused by the 2019 novel coronavirus 

SARS-CoV-2, has emerged from Wuhan, China in 2019. SARS-
CoV-2 belongs to the Coronaviridae RNA virus family that pen-
etrates respiratory epithelial cells and causes fever, cough, myalgia 
or fatigue, other various symptoms, and even death [1]. More 
importantly, asymptomatic carriers of SARS-CoV-2 can be a silent 
source of uncontrolled infection [2]. It has been reported that 
the spike protein of SARS-CoV-2 has been mutated from SARS-
CoV-2, and enabled it to increase the infectivity by contacting 
with respiratory epithelial cells [3].  WHO reports on October 10th, 
2020, that over 3.6 million infections have been reported world-
wide, with a mortality rate of three percent [4]. Although the rates 
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of mortality are very various, it has been generally reported that 
the elderly, the immune-suppressed and those with other diseases 
are highly susceptible to SARS-CoV-2 infection and more likely 
to die [5]. What is more alarming is the fact that there is no sign 
of slowing down. Instead, there is a repeating pattern in several 
countries of a secondary outbreak, after a period of rapid initial 
outbreak. Therefore, tremendous research efforts on developing 
disinfection strategies and treatments to fight against COVID-19 
are being actively conducted. 

Another way to fight against COVID-19 is to develop a safe, fast 
and easy diagnostic method which allows to quickly determine 
the epidemiological surveillance of SARS-CoV-2 and execute 
preventive measures. The most popular diagnostic protocol for 
COVID-19 involves a step-by-step procedure starting from col-
lection of tissue sample from a subject, isolation and extraction 
of viral RNA, and detection of SARS-CoV-2 specific genes [6].  
Although various novel sampling and detection methods have 
been described, the traditional way of tissue sampling from respi-
ratory tract and real-time gene expression analysis are widely used 
for the detection of SARS-CoV-2 in clinical settings [7]. There 
are two ways of tissue sampling from the upper respiratory tract: 
one from nasopharynx and the other from posterior oropharynx. 
Sampling through a nasal swab requires a deep insertion of a swab 
to nasopharynx inside the nose [8], which is a burdensome and 
uncomfortable process for the subject. Sampling from pharyngeal 
wall with a throat swab requires a step to press the tongue and 
scrape the tissue from the throat wall [9]. Even though a throat 
swab might be easier than a nasal swab, both methods should be 
performed by highly trained medical personnel. This require-
ment forces medical personnel to be constantly exposed to the 
infectious viruses. In fact, there have been numerous cases where 
medical personnel performing the tissue sampling inadvertently 
contracted COVID-19 [10]. In particular, a touching of the pha-
ryngeal area could trigger pharyngeal reflex, resulting in nausea or 
cough from the subject and potentially increase the risk of trans-
mitting the virus to nearby health care workers [10]. In fact, a risk 
of COVID-19 infection of the front-line health-care workers in 
the USA and the United Kingdom are ten times higher than nor-
mal population [11].

To protect medical staff from the danger of potential infection, 
we should be making additional efforts such as expanding non-
contact health care, strengthening the protective gear for medical 
staff, and implementing self-tissue sampling method [11]. As a 
candidate self-tissue sampling, a saliva-based sampling has been 
previously used in the detection of Zika virus to ensure safe spatial 
separation between patient and medical staff and experimenters [6, 
12, 13]. It has been already reported that SARS-CoV-2 virus can be 

detected in saliva as well as in the respiratory tract in COVID-19 
patients [14], and the detection sensitivity during the time course 
of disease progression is similar between saliva and nasophyrngeal 
swab samples [15-17]. Given that pharyngeal swab is a widely used 
method in clinics [7], we consider that saliva-sampling is equally 
practical to detect SARS-CoV-2 virus during the time course of 
disease progression. These raise a hope for a complete spatial sepa-
ration of a subject and medical staff via self-saliva sampling.

In addition to the problem of accidental exposure to SARS-
CoV-2 in the clinics, frequent false-positive results during the 
diagnosis remain as a serious challenge. Most of the popular 
diagnostic kits utilize DNA-amplification of SARS-CoV-2 genes 
by Real-Time Quantitative Reverse Transcription Polymerase 
Chain Reaction (qRT-PCR) to determine the presence or absence 
of SARS-CoV-2 genes or positive or negative infection for CO-
VID-19 [6]. During a conventional diagnosis, an experimenter ob-
tains the result of qRT-PCR reaction for each sample in the form 
of the value for the threshold cycle (CT value) of an amplification 
plot. A well-known pitfall of qRT-PCR method is that it can give a 
non-specific amplification product due to a primer-dimerization, 
leading to a false-positive result [9]. We have previously described 
in detail the primer-design guidelines to prevent non-specific am-
plification and false-positive reactions and reported ten validated 
primer sets for SARS-CoV-2 detection in SYBR-green based qRT-
PCR and conventional PCR [9, 18]. However, even with highly 
optimized primer sets, qRT-PCR reactions can often lead to an 
inadvertent amplification due to unknown thermal reactions or 
random formation of a primer-dimer.  To circumvent this issue, we 
have previously proposed to take advantage of the melting temper-
ature, Tm value, which is calculated from each qRT-PCR reaction 
[18]. Tm value for qRT-PCR reaction due to primer-dimerization 
should be different from the one due to a well-targeted reaction. 
An experimenter can evaluate in combination with CT and Tm 
values to determine the presence or absence of SARS-CoV-2 genes 
more accurately. Nevertheless, this process of evaluation is prone 
to errors arising from subjective opinions and personal biases of 
the experimenter. Therefore, there is a pressing need for develop-
ing an error-free and objective algorithm or formula composed 
of CT and Tm values to calculate the degree of the positivity or 
presence of SARS-CoV-2. Such algorithm or formula should be 
indispensable for large-scale testing facilities.

In a series of two previous papers, we have reported the labora-
tory-safe and low-cost SARS-CoV-2 detection protocol, which is 
composed of self-pharyngeal swab sampling procedure, a Trizol-
based RNA extraction, cDNA reverse transcription, SYBR green-
based qRT-PCR protocol or conventional PCR, and optimized 
primer sets for SARS-CoV-2 detection [9, 18]. In the current study, 
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we set out to further develop and optimize a saliva-based ultimate 
detection protocol, equipped with scalable formulae based on lo-
gistic classification model. 

MATERIALS AND METHODS

Volunteer recruitment

The purpose of the sampling and procedure through a pharyn-
geal swab and saliva-based sampling from volunteers were ap-
proved by Seoul National University Hospital Institutional Review 
Board (IRBY-H-1807-197-966) and IRB guidance lines. Total of 7 
volunteers (Volunteer A-G) participated in this experiment. Some 
of these volunteers have direct or indirectly contact with SARS-
CoV-2 infected patients or visited a known COVID-19 outbreak 
area.

The saliva from two human subjects whom had been diagnosed 
as “COVID-19-positive subject” and “COVID-19-negative subject” 
in the Department of Medical Microbiology, Gazi University, An-
kara, Turkey by a commercial TaqMan probe-based kit approved 
by Republic of Turkey Ministry of Health was also included in the 
study. The involvement of COVID-19-positive patient and –nega-
tive individual was allowed by Gazi University Clinical Research 
Comittee 13.10.2020/678 and the self-saliva sampling was per-
formed after obtaining signed consent form from the patient and 
the individual.

Self-pharyngeal swab and self-saliva sampling procedure

Sampling was conducted strictly through self-collection pro-
cedure. Detailed procedure of self-pharyngeal swab is described 
in the previously published paper [9]. The saliva-based sampling 
procedure was modified from the previously described proce-
dure [13]. Briefly, we asked volunteers to drool and spit at least 
1ml saliva into sterile polypropylene medical container (Medical 
container, Catalog #:400025, SPL, Republic of Korea), after brush-
ing the teeth and vigorously rinsing the mouth with tap water. 
And then we added 20 μg of Proteinase K solution (Proteinase K 
solution, 20 mg/ml, Catalog #:21560025-2, Bio-world, USA) for 
an inactivation of SARS-CoV-2. To further ensure an elimination 
of viral activity, we transferred 500 μl of saliva and Proteinase K 
sample into 500 μl Trizol (TRIzolTM Reagent, Catalog #: 15596026, 
InvitrogenTM, USA), followed by mixing with pipetting vigorously 
up-and-down. 

Total RNA extraction

Detailed procedure for Trizol-based manual RNA extraction is 
described in previously published paper [18]. Briefly, each sample 
was incubated in Trizol for 5 minutes in room temperature, and 

then 200 μl chloroform was added, mixing by inverting the tube 5 
times, incubated for 3 minutes and centrifuged for 15 minutes at 
12,000×g at 4℃. The clear upper aqueous layer which contained 
RNA was transferred to a new 1.5 ml tube and same volume of 
isopropanol was added. After incubating for 10 minutes on room 
temperature, gently mix by inverting 5 times was followed. The 
sample was centrifuged for 10 minutes at 12,000×g at 4℃. The 
supernatant was discarded and the remaining pellet was washed 
by 1 ml of 70% ethanol and centrifuged for 10 minutes at 7,500×g 
at 4℃. The sample was washed again with 70% ethanol and cen-
trifuged for 10 minutes at 7,500×g at 4℃. The supernatant was 
discarded and the RNA pellet was air-dried for 5 minutes. To 
solubilize the RNA pellet, the pellet was re-suspended in 10 μl of 
RNase-free water. 

For the RNA kit preparation, we used QIAamp® Viral RNA Mini 
(Catalog #: 52904, Qiagen, Germany) and modify the given proto-
col which is provided by the company. Each sample was incubated 
in Trizol for 5 minutes in room temperature, and then transferred 
to QIAamp Mini column and centrifuged at 6,000×g for 1 minute 
in room temperature. Then, we added 500 μl AW1 Buffer to the 
column and centrifuged at 6,000×g for 1 minute in room tem-
perature. And then, we added 500 μl AW2 Buffer to the column 
and centrifuged at 20,000×g for 3 minutes in room temperature. 
Finally, we eluted with 20 μl of RNase-free water in a clean 1.5 ml 
microcentrifuge tube.

SARS-CoV-2 RNA as a positive control

The positive control containing SARS-CoV-2 viral RNAs was 
obtained from the Korea Centers for Disease Control and Preven-
tion (http://www.cdc.go.kr/). Detailed description of how SARS-
CoV-2 viral RNA was prepared in a separate report [19]. Briefly, 
SARS-CoV-2 viral RNA was prepared by extracting total RNA 
from Vero cell line, which is originated from the kidney of African 
green monkey (Cercopithecus aethiops ), infected with a viral 
clone, BetaCoV/Korea/KCDC03/2020 at MOI 0.05. 

Reverse-transcription

Extracted total RNA was converted to complementary DNA 
(cDNA) using SuperScriptTM III First-Strand Synthesis System 
(Catalog #: 18080051; InvitrogenTM, USA), following the manufac-
turer’s recommended procedures with some modifications.  De-
tailed procedure of reverse transcription is described in previously 
published paper [9]. 

Real-time qPCR 

2X Power SYBR® Green PCR Master Mix (Catalog #: 4368577, 
Thermo Fisher Scientific, USA) was used. The thermal cycle con-

http://www.cdc.go.kr/
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ditions were 50℃ for 2 minutes, 95℃ for 10 minutes, 40 cycles 
with 95℃ for 15 second and 62℃ for 1 minute, followed by melt-
ing curve stage at 95℃ for 10 second and 60℃ for 1 minutes in 
Quantstudio 1 Real-Time PCR system (Applied Biosystems, USA) 
and CFX96TM Real-Time PCR Detection System (Bio-Rad Labo-
ratories, USA). Previously reported primer sets for SARS-CoV-2 
detection and internal positive control are used [18]; SARS-
CoV-2_IBS_E2, SARS-CoV-2_IBS_RdRP2, SARS-CoV-2_IBS_
S2, SARS-CoV-2_IBS_N1, GAPDH primer sets. The final concen-
tration of the primer mix was 500 nM.

1-step real-time qPCR 

One Step TB Green® PrimeScriptTM RT-PCR Kit (Catalog #: 
RR066A, Takara, Japan) was used. We followed the manufacture’s 
manual for preparing PCR mixture and thermal cycle conditions. 
In 20 μl total reaction, we used 2X One Step TB Green RT-PCR 
Buffer III 10 μl, TaKaRa Ex Taq HS 0.4 μl, PrimeScript RT enzyme 
Mix II 0.4 μl, PCR Forward/Reverse Primer (10 μM) 0.4 μl, each, 
ROX Reference Dye or Dye II (50 X) 0.4 μl, total RNA 2 μl, and 
RNase free waater 6 μl. Thermal cycle was 42℃ for 5 minutes, 
95℃ for 10 seconds, 40 cycles with 95℃ for 5 second and 62℃ for 

Fig. 1. Experimental scheme for safe, fast and easy human tissue sampling, total RNA extraction and qRT-PCR. (A and B) Samples are collected by self-
pharyngeal swab and RNA are extracted by (A) Trizol-based manual RNA extraction method (Pharyn/Manual) or (B) Trizol and commercial RNA 
extraction kit (Pharyn/Kit). Trizol is used for inactivating viral infection. (C and D) Samples are collected by self-saliva sampling and RNA are extracted 
by Trizol and commercial RNA extraction kit. Trizol and proteinase K is used for inactivating viral infection. (C) cDNA synthesis and qRT-PCR are 
separately performed from saliva sample (Saliva/Kit) (D) cDNA synthesis and qRT-PCR are combined in one reaction (Saliva/1-step kit).
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Figure 2
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are represented as the mean±S.E.M. 
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30 second. Other conditions were the same as described in Real-
time qPCR.

RESULTS

Self-tissue sampling protocols for SARS-CoV-2 detection

To optimize the tissue sampling and RNA extraction procedure 
for enhanced safety, speed, and cost-effectiveness, we compared 
and contrasted four different procedures (Fig. 1A~C); 1) Pharyn/
Manual: self-pharyngeal swab sampling and manual RNA prepa-
ration, 2) Pharyn/Kit: self-pharyngeal swab sampling and com-
mercial kit-based 2-step RNA preparation, 3) Saliva/Kit: self-
saliva sampling and commercial kit-based 2-step cDNA reverse 
transcription and qRT-PCR, and 4) Saliva/1-step Kit: self-saliva 
sampling and 1-step qRT-PCR with combined cDNA reverse 
transcription and qRT-PCR. Pharyn/Manual procedure utilized a 
manual Trizol-based RNA extraction, whereas other procedures 
utilized Trizol-based RNA extraction kit. The difference between 
Saliva/Kit and Saliva/1-step Kit was that Saliva/1-step Kit utilized 
1-step qRT-PCR with combined cDNA reverse transcription and 
qRT-PCR, whereas Saliva/Kit whereas Saliva/Kit utilized a 2-step 
procedure.

To assess the quality of tissue sampling, we performed qRT-PCR 
from 7 volunteers, who went through the two different tissue sam-
pling methods and whose samples went through the four different 
procedures (Fig. 1A~D). We found that Pharyn/Manual, Pharyn/
Kit, and Saliva/Kit sampling methods showed no significant dif-
ference in CT and Tm of amplicons in the human internal positive 
control, GAPDH (Fig. 2A~C, 2E, 2F), indicating that the self-saliva 
sampling has similar sensitivity as the self-pharyngeal sampling. In 
addition, we found that Saliva/1-step Kit sampling showed slightly 

higher CT and Tm, compare to other procedures (Fig. 2D~F). This 
might be caused by lower efficiency of the 1-step qRT-PCR kit, 
which has a shorter time of cDNA reverse transcription, shorter 
extension time in the thermal cycle, and lower primer concentra-
tion. Nevertheless, the CT and Tm values were within the posi-
tive range of GAPDH (Fig. 2E, 2F), indicating that the self-saliva 
sampling even with 1-step Kit has similar sensitivity as the self-
pharyngeal sampling or the self-saliva sampling with 2-step RNA 
Kit.

To compare and contrast the cost-effectiveness and speed among 
the four procedures, we estimated the total cost per each sample 
(Table 1) and duration of each procedure (Table 2). We found that 
the manual RNA extraction method was the most economical 
(~$15), although it took longer duration (~4 hours) and more 
work load for the experimenter. Using the 2-step RNA prep kit 
slightly increased the cost, while reducing time to 3.3 hours and 
decreasing work load. Finally, with 1-step qRT-PCR kit and self-
saliva sampling, the entire procedure took less than 2 hours and 
under $14 (Table 1 and Table 2), making the Saliva/1-step Kit the 
fastest and most cost-effective. 

Direct comparison of Pharyn/Manual, Pharyn/Kit, Saliva/

Kit, and Saliva/1-step Kit procedures

Right after the local outbreak of COVID-19 infections near 
Gwanghwamun area in Seoul, Republic of Korea, on August 15th, 
2020, we performed the SARS-CoV-2 detection protocols for 
volunteers who have either unknowingly contacted SARS-CoV-
2-positive patient or visited near Gwanghwamun area during the 
outbreak. Tissue sampling was conducted only on asymptomatic 
volunteers, after proper self-quarantine, following the governmen-
tal or institute’s guidelines. All volunteers had no symptoms related 

Figure 2
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to COVID-19.
To directly compare the efficiency and sensitivity of Pharyn/

Manual, Pharyn/Kit, Saliva/Kit, and Saliva/1-step Kit procedures, 
we firstly conducted self-tissue sampling and each diagnosis pro-
tocol for Volunteers A through G. We asked each volunteer to per-
form both self-pharyngeal swab sampling and self-saliva sampling. 
We then processed each sample through RNA extraction and 
qRT-PCR steps as depicted in Fig. 1A~D. For the qRT-PCR, we 
utilized four SARS-CoV-2-targeted SARS-CoV-2_IBS_RdRP2, 
SARS-CoV-2_IBS_E2, SARS-CoV-2_IBS_S2, SARS-CoV-2_IBS_
N1, and one human gene-targeted GAPDH (for internal positive 
control) primer sets, which we have previously validated and  re-
ported [9, 18].

As expected, the SARS-CoV-2-targeting primer sets showed 
sufficient amplification in SARS-COV-2 positive control (the red 
traces in Fig. 3A~D, Fig. 4A~D, Fig. 5A~D, and Fig. 6A~D), and the 
GAPDH primer set showed sufficient amplification in all of the 
volunteer samples in all four procedures (Fig. 3E, Fig. 4E, Fig. 5E, 
and Fig. 6E). Among the four SARS-CoV-2-targeted primer sets, 
the S2-targeted primer set, SARS-CoV-2_IBS_S2, showed CT>35 
or undetermined (u.d.) in most of the volunteer samples (Fig. 3C 
and 3F; Fig. 4C and 4F; Fig. 5C and 5F; Fig. 6C and 6F), which can 
be interpreted as “negative” for SARS-CoV-2. This is based on the 
assumption that CT value of a single molecule (copy) amplifica-
tion is near 35 [21]. In contrast, other SARS-CoV-2-targeted prim-
er sets (SARS-CoV-2_IBS_RdRP2, SARS-CoV-2_IBS_E2, and 

SARS-CoV-2_IBS_N1) sometimes showed CT<35 in some of the 
volunteer samples (Fig. 3~6; CT values in red), which could theo-
retically be interpreted as “positive” for SARS-CoV-2. However, Tm 
values for the corresponding melting curves showed a significant 
deviation of more than 0.3℃ from the Tm value for SARS-CoV-2 
positive control (Fig. 3~6; Tm values in red). In particular, Saliva/1-
step Kit procedure group showed the most number of CT<35, 
which all turn out to be showing significant deviations of Tm 
from those of SARS-CoV-2 positive control (Fig. 6). These results 
indicate that the apparent CT<35 in some of the samples might be 
caused by an inappropriate amplification due to primer-dimer-
ization [18]. Thus, considering both CT and Tm values, all of the 
samples in all four procedures gave “negative” for SARS-CoV-2 as 
expected. These results imply that considering both CT and Tm is 
practical in eliminating false positives. Taken together, these results 
validate the sufficient efficiency and sensitivity of the protocols 
with both self-pharyngeal and self-saliva sampling, even with the 
time-saving 1-step qRT-PCR kit.

Development of a mathematical formula for automatic  

determination of sampling quality and risk assessment 

based on logistic classification model

We targeted and detected four different genes in SARS-CoV-2 
for COVID-19 detection.  As previously described [9], we con-
sidered subject as COVID-19-positive if at least one of the four 
different SARS-CoV-2 genes is positive. Therefore, we considered 

Table 1. Cost breakdown per volunteer sample

Pharyn/Manual Pharyn/Kit Saliva/Kit Saliva/1-step Kit

Swab or collection tube and etc.   $0.50   $0.70   $0.70   $0.70 
Trizol   $1.10   $1.10   $1.10   $1.10 
RNA preperation kit -   $7.70   $7.70   $7.70 
Protease K - -   $1.50   $1.50 
cDNA synthesis Kit   $8.13   $8.13   $8.13 
SYBR master mix   $3.25   $3.25   $3.25 
1-step-qRT-PCR kit   $1.60 
Primer set   $0.10   $0.10   $0.10   $0.10 
Tubes and buffers   $2.50   $1.00   $1.00   $1.00 
Total time $15.58 $21.98 $23.48 $13.70 

Table 2. Durations of each sampling, RNA extraction and qRT-PCR procedure

Pharyn/Manual Pharyn/Kit Saliva/Kit Saliva/1-step Kit

Self-pharyngeal swab collection ~10 min ~10 min - -
Self-saliva collection - - ~10 sec ~10 sec
RNA extraction ~70 min ~30 min ~40 min ~40 min
cDNA synthesis 60 min 60 min 60 min 5 min
qRT-PCR 100 min 100 min 100 min 65 min
Total time ~4 hrs ~3.3 hrs ~3.3 hrs ~2 hrs
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F
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CT value Tm (℃)

RdRP2 E2 S2 N1 GAPDH RdRP2 E2 S2 N1 GAPDH

SARS-CoV-2 17.974 14.848 13.848 15.988 26.956 78.126 77.511 81.198 79.047 81.020 

Volunteer A 34.796 u.d. u.d. 34.473 27.298 72.042 59.999 59.999 76.310 79.816 

Volunteer B 34.872 37.818 36.908 34.685 28.996 71.889 77.682 77.986 78.749 79.663 

Volunteer C 35.701 u.d. 35.913 34.573 24.145 76.767 59.999 83.017 74.023 79.968 

Volunteer D 35.033 u.d. 36.670 35.882 27.465 71.889 59.999 75.704 80.126 79.821 

Volunteer E 35.207 37.651 37.109 37.527 24.989 71.892 77.992 75.552 61.676 79.974 

Volunteer F 37.782 u.d. 36.653 u.d. 26.708 66.589 73.627 77.911 62.000 79.747 

Volunteer G u.d. u.d. u.d. u.d. 26.988 62.000 91.528 62.000 62.000 79.747 

NTC 37.735 37.712 36.470 u.d. u.d. 75.616 93.517 62.000 62.000 71.638 

Fig. 3. Amplification and melting curve plot from Volunteer A~G’s Pharyn/Manual samples. Amplification plot (left panel) and melting curve plot (right 
panel) from qRT-PCR of volunteer A~G’s pharyn/manual samples. qRT-PCR was performed by using the previously reported SARS-CoV-2 primer 
sets; (A) SARS-CoV-2_IBS_RdRP2, (B) SARS-CoV-2_IBS_E2, (C) SARS-CoV-2_IBS_S2, (D) SARS-CoV-2_IBS_N1. (E) GAPDH primer set was used 
for IPC detection. Each color code represent individual volunteer result and SARS-CoV-2 amplification was represent as red color. (F) Ct value and Tm 
from volunteers A~G’s Pharyn/Manual samples.
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Fig. 4. Amplification and melting curve plot from Volunteer A~G’s Pharyn/Kit samples. Amplification plot (left panel) and melting curve plot (right 
panel) from qRT-PCR of volunteer A~G’s pharyn/kit samples. qRT-PCR was performed by using the previously reported SARS-CoV-2 primer sets; (A) 
SARS-CoV-2_IBS_RdRP2, (B) SARS-CoV-2_IBS_E2, (C) SARS-CoV-2_IBS_S2, (D) SARS-CoV-2_IBS_N1. (E) GAPDH primer set was used for IPC 
detection. Each color code represent individual volunteer result and SARS-CoV-2 amplification was represent as red color. (F) Ct value and Tm from 
volunteers A~G’s Pharyn/Kit samples.
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Fig. 5. Amplification and melting curve plot from Volunteer A~G’s Saliva/Kit samples. Amplification plot (left panel) and melting curve plot (right 
panel) from qRT-PCR of volunteer A~G’s saliva/kit samples. qRT-PCR was performed by using the previously reported SARS-CoV-2 primer sets; (A) 
SARS-CoV-2_IBS_RdRP2, (B) SARS-CoV-2_IBS_E2, (C) SARS-CoV-2_IBS_S2, (D) SARS-CoV-2_IBS_N1. (E) GAPDH primer set was used for IPC 
detection. Each color code represent individual volunteer result and SARS-CoV-2 amplification was represent as red color. (F) Ct value and Tm from 
volunteers A~G’s Saliva/Kit samples.
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Fig. 6. Amplification and melting curve plot from Volunteer A~G’s Saliva/1-step Kit samples. Amplification plot (left panel) and melting curve plot (right 
panel) from qRT-PCR of volunteer A~G’s saliva/1-step kit samples. To determine whether volunteers are infected to SARS-CoV-2, qRT-PCR was per-
formed by using the previously reported SARS-CoV-2 primer sets; (A) SARS-CoV-2_IBS_RdRP2, (B) SARS-CoV-2_IBS_E2, (C) SARS-CoV-2_IBS_
S2, (D) SARS-CoV-2_IBS_N1. (E) GAPDH primer set was used for IPC detection. Each color code represent individual volunteer result and SARS-
CoV-2 amplification was represent as red color. (F) Ct value and Tm from volunteers A~G’s Saliva/1-step Kit samples.
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subject as COVID-19-negative only when all four diffrent SARS-
CoV-2 genes were negative. This approach was optimized for 
ensuring and distinguishing the true-negative infection from po-
tential positives.

During the processes of tissue sampling, RNA preparation and 
qRT-PCR, we realized that the manual determination of “posi-
tive” or “negative” by an experimenter requires some aspect of 
personal judgement (Fig. 7), which could allow biases and errors 
to enter. Especially in the case of Saliva/1-step Kit with many reac-
tions showing CT<35 (Fig. 6), we identified multiple error-prone, 
decision-requiring steps (Fig. 7), in which personal biases and mis-
judgment could lead to false positives. To eliminate these possibili-
ties, we set out to develop an error-free, unbiased mathematical 
formula to determine the “positive” or “negative” for SARS-CoV-2 
based on the observed CT and Tm values.

For SARS-CoV-2 infection risk probability assessment and sam-
pling quality assessment, we developed a formula for the probabil-
ity σ, based on the logistic classification model [22]:
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represents “no risk” and 1 “high risk”. We developed a formula for 
CT value risk probability assessment (σ CT), based on Equation 1. 
We assumed that CT value of a single molecule (copy) amplifica-
tion is ≥35 based on the previous work [21]. Thus, we setup the 
threshold value, b =35. We also adjusted the steepness value, a  to 
give probabilities of 0.05 at CT 35+1 and 0.95 at CT 35-1. This es-
timation resulted in steepness value, b=3;
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After obtaining the probability value, σ COVID19 for each target gene 
for SARS-CoV-2, we selected the maximum value among the four 
genes as the final representative risk probability, σ COVID19 for each 
volunteer sample.

In case of the sampling quality assessment (σ Quality), only GAPDH 
was considered and we modified Equation 2 and 4. Since SARS-
CoV-2 positive control RNA was originated from the Vero cell 
line, which shows a different Tm compared to human GAPDH, we 
corrected the ΔTm with a correction factor of 1.05:
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value among the four genes as the final representative risk probability, σ
�������

 for each volunteer sample. 

In case of the sampling quality assessment (σ
 Quality

), only GAPDH was considered and we modified 

Equation 2 and 4. Since SARS-CoV-2 positive control RNA was originated from the Vero cell line, which shows a 

different Tm compared to human GAPDH, we corrected the ΔTm with a correction factor of 1.05: 

σ
�������

�CT
�����

, |ΔTm|
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(Equation 5). 

The correction factor of 1.05 for ΔTm of Vero cell GAPDH should be taken out in case of the positive control 

originated from the human samples. The graphical representation of σ
 COVID19 

and σ
 Quality

 is shown in Fig. 8C. 

Based on those equations, we devised an automatic assessment algorithm, starting with the CT and Tm 

values for each volunteer sample (Fig. 8 E). We generated an Excel worksheet (Supplemental Data 1) composed of 

input cells for CT and Tm values for each target gene of a volunteer sample. Once the CT and Tm values are 

(Equation 5).

The correction factor of 1.05 for ΔTm of Vero cell GAPDH 
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Pharyn/Manual Pharyn/Kit Saliva/Kit Saliva/1-step kit

Internal positive control 

(GAPDH) CT value < 35

Internal positive control 

(GAPDH) |ΔTm| ≤ 0.2

At least one of

SARS-CoV-2 target

CT value < 35

Sars-CoV-2 target

|ΔTm| ≤ 0.2

CoVID-19

Positive

CoVID-19

Negative

YES

YES

YES

YES

NO

NO

NO

NO (All targets 

CT value ≥ 35)

Re-

sampling 

needed

Proceed

Manual COVID-19 risk assessment 

Fig. 7. Flow chart for manual SARS-CoV-2 risk assessment process. 



25www.enjournal.orghttps://doi.org/10.5607/en20063

Ultimate COVID-19 Detection Protocol

Figure 8
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should be taken out in case of the positive control originated from 
the human samples. The graphical representation of σ COVID19 and 
σ Quality is shown in Fig. 8C.

Based on those equations, we devised an automatic assessment 
algorithm, starting with the CT and Tm values for each volunteer 
sample (Fig. 8E). We generated an Excel worksheet (Supplementary 
Data 1) composed of input cells for CT and Tm values for each 
target gene of a volunteer sample. Once the CT and Tm values are 
entered, the embedded formulae automatically calculate σ Quality 
to assess “Re-sampling needed” or “Proceed” and σ COVID19 to assess 
“COVID-19 Positive” or “COVID-19 Negative.” 

To automatically assess the sampling quality, σ Quality was calcu-
lated from the CT and Tm values of GAPDH qRT-PCR results 
from Volunteer A through G (Table 3). For the undetermined CT 
values (u.d.), each CT value was set to 40, which is the maximum 
cycle number in qRT-PCR. We found that the volunteer samples 
in Pharyn/Manual, Pharyn/Kit, Saliva/Kit, and Saliva/1-step Kit 
showed σ Quality>0.05, except 2 cases, indicating that the sampling 
quality was adequate to “proceed” for further analysis and that 
there is no need for re-sampling (Table 3). We asked for the re-
sampling from volunteers who had showed σ Quality<0.05 in assess-
ment. Notably, the mean σ Quality was well above 0.5 in all procedure 
groups (Fig. 8D).

After confirming the sampling quality, each qRT-PCR set was 
further processed for the risk assessment of COVID-19 by auto-
matically calculating σ CT (Table 4), σ |ΔTm| (Table 5), and σ COVID19 
(Table 6). We found that many samples showed σ CT>0.05: ten 
in Pharyn/Manual, eleven in Pharyn/Kit, six in Saliva/Kit, and 
fourteen in Saliva/1-step Kit (Table 4), likely caused by CT<35. In 
contrast, most samples showed σ |ΔTm|<0.05, except for only one 
in Pharyn/Manual, one in Pharyn/Kit, two in Saliva/Kit, and one 
in Saliva/1-step Kit showed σ |ΔTm|>0.05 (Table 5). Finally, none 
showed σ COVID19>0.05, indicating that all volunteers were “negative” 
for COVID-18 (Table 6), while the mean σ COVID19 was 0.9975 for 

SARS-CoV-2 positive control (Table 6, Fig. 8D). Taken together, 
the automatic calculation of σ Quality, σ CT, σ |ΔTm|, and σ COVID19, based 
on CT and Tm values, allowed fast, unsupervised and unbiased as-
sessment of sampling quality and risk of COVID-19.

Application of automatic determination of sampling  

quality and risk assessment from COVID-19-positive and 

-negative subjects with Saliva/Kit

As a proof-of-concept experiment, we tested Saliva/Kit from 
one SARS-CoV-2-positive and  one SARS-CoV-2-negative sub-
jects in the clinic (Fig. 9). We found that SARS-CoV-2 genes and 
GAPDH were detected in SARS-CoV-2-positive subject, although 
only GAPDH was detected in SARS-CoV-2-negative subject (Fig. 
9A~E). SARS-CoV-2 positive subject showed 26.5 to 33.5 CT 
value for SARS-CoV-2 detection (Fig. 9F). Based on our estima-
tion of the protocol efficiency in previous study [9], we estimated 
that 10~100 viral copies per each qRT-PCR reaction were present 
in the self-saliva sample. For automatic determination of sampling 
quality and risk assessment, we entered CT value and Tm value 
for each test in the Automatic COVID-19 risk assessment sheet 
in Supplementary Data 1 (Fig. 9F). We adjustmed GAPDH CT 
correction value from 1.05 to 0.5 to correct for the different qRT-
PCR machine what we used. This sheet automatically determined 
COVID-19-positive or -negative, which accurately corresponded 
to the clinical diagnosis. Therefore, we validated that our Saliva/
Kit sampling method, SARS-CoV-2 detection protocol, and COV-
ID-19 risk assessment algorithm work properly in clinical settings. 

DISCUSSION

In this study we have extended our previous studies on develop-
ment of laboratory-safe detection protocol using pharyngeal swab 
sampling method and further optimization of primer sets for 
SARS-CoV-2 and internal positive control (GAPDH) to develop 

Table 3. Sampling quality assessment from σQuality using internal positive control (GAPDH)

Quality assess-
ment

Target/as-
sessment

SARS-
CoV-2

Volunteer 
A

Volunteer 
B

Volunteer 
C

Volunteer 
D

Volunteer 
E

Volunteer 
F

Volunteer 
G

NTC

Pharyn/Manual GAPDH 0.998 0.799 0.039 0.997 0.822 0.997 0.334 0.334 0.000
Assessment Proceed Proceed Re-sam-

pling
Proceed Proceed Proceed Proceed Proceed

Pharyn/Kit GAPDH 0.998 0.995 0.995 0.894 0.996 0.996 0.993 - 0.000
Assessment Proceed Proceed Proceed Proceed Proceed Proceed Proceed -

Saliva/Kit GAPDH 0.998 0.995 0.079 0.060 0.996 0.989 0.060 0.839 0.000
Assessment Proceed Proceed Proceed Proceed Proceed Proceed Proceed Proceed

Saliva/1-step Kit GAPDH 1.000 0.749 0.843 0.821 0.804 0.759 0.820 0.048 0.000
Assessment Proceed Proceed Proceed Proceed Proceed Proceed Proceed Re-sam-

pling
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the ultimate detection protocol using saliva-based sampling with 
automatic assessment of sample quality and risk for COVID-19. 
The advantages of our protocol over other previously reported 
protocols include; 1) the saliva-based self-sampling allows com-
plete spatial separation and medical staff or experimenter, elimi-
nating a possibility of cross-infection, 2) the low-cost and fast (less 
than 2 hour) protocol provides a flexibility of use in the same-day 
events, such as attendance in face-to-face conference meetings or 
admission to sports/performance,  and 3) the automatic assess-
ment of sampling quality and risk for COVID-19 allows unbiased, 
unsupervised, objective, and false-positive-free testing, suitable for 

mass-scale, high-throughput testing facilities.
In some countries, such as the USA and the United Kingdom, the 

saliva-sampling has been recently approved as a national verified 
procedure [7, 23]. Saliva-based sampling provides an important 
advantage of complete spatial separation of medical staff and pa-
tients. The convenient feature of saliva-sampling procedure also 
enables shipping-based collection of samples, provided that the 
subject inactivates the viral particles of SARS-CoV-2 with Pro-
teinase K at the site of collection before sending out via delivery 
services. The rest of the procedures of RNA extraction and qRT-
PCR can be carried out at any Biosafety Level II Grade molecular 

Table 4. SARS-CoV-2 infection risk assessment  from σCT

Risk probability (CT) Target
SARS-
CoV-2

Volun-
teer A

Volun-
teer B

Volun-
teer C

Volun-
teer D

Volun-
teer E

Volun-
teer F

Volun-
teer G

NTC

Pharyngeal,  Trizol-manual RdRP2 1.000 0.648 0.595 0.109 0.475 0.350 0.000 0.000 0.000 
E2 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
S2 1.000 0.000 0.003 0.061 0.007 0.002 0.007 0.000 0.012 
N1 1.000 0.829 0.720 0.783 0.066 0.001 0.000 0.000 0.000 

Pharyngeal,  Trizol-Kit RdRP2 1.000 0.457 0.312 0.337 0.763 0.999 0.029 - 0.350 
E2 1.000 0.571 0.498 0.000 0.015 0.000 0.000 - 0.053 
S2 1.000 0.001 0.000 0.713 0.068 0.875 0.000 - 0.000 
N1 1.000 0.000 0.001 0.179 0.046 0.000 0.000 - 0.008 

Saliva, Trizol-Kit, 2-step 
qRT-PCR

RdRP2 1.000 0.588 1.000 0.004 0.028 0.118 0.036 0.418 0.059 
E2 1.000 0.000 0.179 0.000 0.000 0.000 0.000 0.001 0.000 
S2 1.000 0.000 0.000 0.000 0.000 0.165 0.000 0.000 0.034 
N1 1.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 

Saliva, Trizol-Kit, 1-step 
qRT-PCR

RdRP2 1.000 0.872 0.000 0.990 1.000 1.000 0.005 1.000 0.207 
E2 1.000 0.000 0.504 0.000 0.000 0.001 0.868 0.060 0.000 
S2 1.000 0.000 0.256 0.000 0.000 0.002 0.000 1.000 0.000 
N1 1.000 0.761 0.761 0.066 0.023 0.974 0.023 0.997 0.000 

Table 5. SARS-CoV-2 infection risk assessment  from σ|ΔTm| 

Risk probability (|ΔTm|) Target
SARS-
CoV-2

Volun-
teer A

Volun-
teer B

Volun-
teer C

Volun-
teer D

Volun-
teer E

Volun-
teer F

Volun-
teer G

NTC

Pharyngeal, Trizol-manual RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
E2 0.998 0.000 0.705 0.000 0.000 0.000 0.000 0.000 0.000
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
N1 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Pharyngeal, Trizol-Kit RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 
E2 0.998 0.000 0.000 0.039 0.000 0.000 0.000 - 0.000 
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 
N1 0.998 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 

Saliva, Trizol-Kit, 2-step 
qRT-PCR

RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
E2 0.998 0.000 0.000 0.050 0.000 0.000 0.000 0.025 0.863 
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
N1 0.998 0.000 0.000 0.000 0.000 0.073 0.000 0.000 0.000 

Saliva, Trizol-Kit, 1-step 
qRT-PCR

RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
E2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.804 
N1 0.998 0.000 0.000 0.000 0.058 0.000 0.000 0.000 0.000 
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biology laboratories. We have used both Proteinase K and Trizol 
to inactivate the viral activity to ensure the complete inactivation. 
However, there are numerous reports using Protein K alone to in-
activate SARS-CoV-2 [20, 24]. If Proteinase K alone is sufficient to 
inactivate the viral activity, then it should be used instead of Trizol 
because Trizol is known for its toxicity [25].  Future experiments 
are needed to confirm this key feature of Proteinase K to inactivate 
SARS-CoV-2.

Another advantage of using Proteinase K alone is that it allows 
detection of SARS-CoV-2 without RNA extraction [26, 27], which 
should further reduce the total procedure time to less than one 
hour. Although we have not tested this possibility, it needs future 
investigation. Taken together, our study suggests that self-saliva 
sampling is a reliable method to replace pharyngeal swab for 
SARS-CoV-2 detection protocol.

During the assessment of sampling quality, we used the correc-
tional factor of 1.05 for the positive control obtained from the Vero 
cell line originated from the African green monkey [9, 18]. This 
correctional factor was necessary because the Tm value for GAP-
DH-targeted qRT-PCR showed an average deviation of 1.05℃ 
between SARS-CoV-2 positive control and volunteer samples (Fig. 
3F, 4F, 5F, and 6F). It is critical to remember that in case of positive 
controls obtained directly from human patients, this correctional 
factor should be taken out from the formula.

In addition to our focus on the sampling method, we have fo-
cused on developing the ways to minimize the occurrence of a 

false-positive. To do this, we considered both CT and Tm values of 
the qRT-PCR results. In most of the currently available commer-
cial detection kits, only the threshold of CT value is used as a basis 
for “positive” versus “negative”. However, we strongly suggest that 
such protocol imposes a danger of false-positive due to primer-di-
merization-mediated amplification, which we have demonstrated 
that it has a different Tm value from the positive control [18]. To 
prevent this possibility, we developed the formulae for automatic 
risk assessment, which reflects both CT and Tm values. This for-
mula utilizes the popular logistic classification model, which is a 
regression technique that can be performed when the dependent 
variable is to be bisected. We did not choose a two-dimensional 
logistic classification model because CT and Tm are independent 
variables. Instead, we multiplied the two probability functions 
for CT and Tm to obtain the combined risk probability for each 
targeted gene (Equation 4). The results of the automatic calcula-
tion and evaluation show that all of the volunteer samples have 
expected “negative” assessment. These promising results show the 
high potential and usefulness our model and formulae in large-
scale testing.

We conducted this study only with one COVID-19 positive 
subject. Further research with more COVID-19 patients at a large-
scale may provide more clinically optimized protocol.

Table 6. SARS-CoV-2 infection risk assessment from σCOVID19 

Risk probability
Target/

assessment
SARS-
CoV-2

Volun-
teer A

Volun-
teer B

Volun-
teer C

Volun-
teer D

Volun-
teer E

Volun-
teer F

Volun-
teer G

NTC

Pharyngeal, Trizol-manual RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
E2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
N1 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Assessment Positive Negative Negative Negative Negative Negative Negative Negative

Pharyngeal, Trizol-Kit RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 
E2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 
N1 0.998 0.000 0.000 0.000 0.000 0.000 0.000 - 0.000 
Assessment Positive Negative Negative Negative Negative Negative Negative

Saliva, Trizol-Kit, 2-step 
qRT-PCR

RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
E2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
N1 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Assessment Positive Negative Negative Negative Negative Negative Negative Negative

Saliva, Trizol-Kit, 1-step 
qRT-PCR

RdRP2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
E2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
S2 0.998 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
N1 0.998 0.000 0.034 0.000 0.001 0.000 0.000 0.000 0.000 
Assessment Positive Negative Negative Negative Negative Negative Negative Negative
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Figure 9
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Fig. 9. Amplification and melting curve plot from Human Subject’s Saliva/Kit samples. Amplification plot (left panel) and melting curve plot (right 
panel) from qRT-PCR of human subjects saliva/Kit samples. To determine whether volunteers are infected to SARS-CoV-2, qRT-PCR was performed 
by using the previously reported SARS-CoV-2 primer sets; (A) SARS-CoV-2_IBS_RdRP2, (B) SARS-CoV-2_IBS_E2, (C) SARS-CoV-2_IBS_S2, (D) 
SARS-CoV-2_IBS_N1. (E) GAPDH primer set was used for IPC detection. Each color code represent individual subject result and SARS-CoV-2 am-
plification was represent as red color. (F) Sampling quality assessment and COVID-19 risk assessment with Automatic COVID-19 risk assessment in 
Supplementary Data 1.
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