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Abstract
μ-opioid receptor (MOR) is a class of opioid receptors that is critical for analgesia, reward, and euphoria. MOR is distributed 
in various brain regions, including the hippocampus, where traditionally, it is believed to be localized mainly at the presynap-
tic terminals of the GABAergic inhibitory interneurons to exert a strong disinhibitory effect on excitatory pyramidal neurons. 
However, recent intensive research has uncovered the existence of MOR in hippocampal astrocytes, shedding light on how 
astrocytic MOR participates in opioid signaling via glia-neuron interaction in the hippocampus. Activation of astrocytic MOR 
has shown to cause glutamate release from hippocampal astrocytes and increase the excitability of presynaptic axon fibers 
to enhance the release of glutamate at the Schaffer Collateral-CA1 synapses, thereby, intensifying the synaptic strength and 
plasticity. This novel mechanism involving astrocytic MOR has been shown to participate in hippocampus-dependent condi-
tioned place preference. Furthermore, the signaling of hippocampal MOR, whose action is sexually dimorphic, is engaged in 
adult neurogenesis, seizure, and stress-induced memory impairment. In this review, we focus on the two profoundly different 
hippocampal opioid signaling pathways through either GABAergic interneuronal or astrocytic MOR. We further compare 
and contrast their molecular and cellular mechanisms and their possible roles in opioid-associated conditioned place prefer-
ence and other hippocampus-dependent behaviors.
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Introduction

Opioids such as morphine have been widely used for effec-
tive treatment of severe pain. Opioids are also frequently 
used non-medically for their euphoric effects, and the 

recreational use of opioids typically results in addiction 
[1, 2]. The opioids act upon their specific opioid receptors, 
i.e., μ-opioid receptor (MOR), δ-opioid receptor (DOR), 
κ-opioid receptor (KOR), and nociceptin receptors (NOR) 
[3]. Among these four types of opioid receptors, the pro-
totypical agonist of MOR is morphine [4]. The identity of 
opioid receptors including MOR was first revealed in the 
1970s [5, 6], whereas opiates have been conventionally 
used for remedial and recreational purposes for the past 
several thousand years. Furthermore, the crystal structure 
of G-protein-coupled MOR was elucidated very recently [7, 
8], which gave significant insights into the design of new 
MOR ligands with improved pharmacological properties tar-
geting the MOR. There are several well-known exogenous 
MOR agonists, including morphine, oxycodone, and oxy-
morphone, which are widely used as analgesics and are also 
highly addictive substances [9]. In addition to these exog-
enous agonists, there are endogenous MOR agonists such as 
beta-endorphin and enkephalin [10, 11], which were firstly 
isolated by groups led by Chung and Morris, respectively 

Cellular and Molecular Life Sciences

Min-Ho Nam and Woojin Won authors contributed equally.

 * C. Justin Lee 
 cjl@kist.re.kr

1 Center for Neuroscience, Korea Institute of Science 
and Technology, Seoul 02792, Republic of Korea

2 KU-KIST Graduate School of Converging Science 
and Technology, Korea University, 145 Anam-ro, 
Seogbuk-gu, Seoul 02841, Republic of Korea

3 Center for Cognition and Sociality, Institute for Basic 
Science, Daejeon 34126, Republic of Korea

4 Department of Medical Biotechnology, Dongguk 
University-Gyeongju, 123 Dongdae-ro, Gyeongju, 
Gyeongbuk, Republic of Korea

http://orcid.org/0000-0002-3555-0980
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-020-03595-8&domain=pdf


 M.-H. Nam et al.

1 3

[12–16]. MOR has a widespread but selective distribution 
in the major circuits of pain, reward, and addiction, particu-
larly in the periaqueductal gray region, nucleus accumbens, 
amygdala, and hippocampus [17, 18].

In the hippocampus, MOR is broadly expressed on 
GABAergic interneurons [10, 19–22]. MOR is a Gαi-
protein-coupled receptor (Gi-GPCR), which is classically 
regarded as an inhibitory GPCR. Therefore, MOR activa-
tion by exogenous opioids of small molecular structures 
(e.g., morphine and oxycodone) and opioid peptides called 
exorphins (e.g., casomorphine and soymorphine) has been 
believed to excite neurons via suppression of presynaptic 
release of γ-aminobutyric acid (GABA) [23–25]. In addition 
to this traditional view, it has been recently demonstrated 
that a new surprising player of astrocytes in the CA1 hip-
pocampus exhibits high expression of MOR [26], the activa-
tion of which elicits a significant release of glutamate from 
astrocytes through two-pore potassium (K2P) channels con-
taining tandem of pore domains in a weak inward rectifying 
 K+ channel-1 (TWIK-1) and TWIK-related  K+ channel-1 
(TREK-1) [27, 28]. These new findings suggest that astro-
cytic glutamate by MOR activation exerts a non-canonical 
excitatory effect of Gi-GPCR onto neighboring neurons.

In addition to the classical analgesic effect of opioids, 
several recent studies have focused on the relationship 
between MOR and diverse hippocampal functions. For 
example, MOR agonists affect cognitive performance such 
as spatial learning and memory by modulating the excitatory 
synaptic transmission in the hippocampus [29–31]. Moreo-
ver, MOR agonists are known to be engaged in adult hip-
pocampal neurogenesis [32, 33], seizure [34–36], and stress-
induced hippocampal changes [37, 38]. These studies allude 
to the possibility that hippocampal MOR plays key roles 
in many cognitive processes and pathological conditions, 
which might be under-appreciated and needs to be high-
lighted. However, there is not yet a comprehensive review 
on this important topic. Therefore, we have reviewed previ-
ous literature on the cellular localization of MOR, signaling 
pathways in interneurons and astrocytes, its role in synaptic 
transmission and plasticity, and the behavioral and cognitive 
functions of hippocampal MOR.

Cellular localization of MOR 
in the hippocampus

Four major subtypes of opioid receptors, three classical and 
one new subtype, have been characterized, which are MOR, 
DOR, KOR, and NOR, respectively [3]. Each subtype of 
opioid receptors has distinct functional differences with var-
ying preferences for endogenous opioid peptides and exog-
enous ligands. Among them, MOR has a high affinity for 
beta-endorphin and enkephalin. Early immunohistochemical 

studies have reported that enkephalin is abundant in the hip-
pocampus [39, 40], while beta-endorphin level has been 
inconclusive [41–43]. The presence of beta-endorphin 
needs to be confirmed by advanced sensor techniques such 
as G-protein-coupled receptor-based (GRAB) genetically 
encoded fluorescent sensor or fluorescence resonance energy 
transfer (FRET) sensor [44, 45].

Unlike the μ-opioid peptides, the localization of MOR 
has been established extensively. In the hippocampus, sev-
eral early studies have demonstrated a relatively abundant 
expression of MOR in the pyramidal cell layer, stratum 
lacunosum-moleculare, and the molecular and granular 
cell layers of the ventral dentate gyrus [17, 46]. Subsequent 
immunocytochemistry and electron microscopy studies have 
shown that MOR is localized in the somatodendritic and 
axonal compartments of GABAergic neurons in rat hip-
pocampal formation [22]. Among many types of GABAergic 
interneurons, MOR is expressed in most of the parvalbumin 
(PV)-containing basket cells and some of the somatosta-
tin-, neuropeptide Y-, vasoactive intestinal peptide-, and 
calretinin-containing interneurons in the CA1 hippocam-
pus [19–21]. In the dentate gyrus, MOR is extensively co-
localized with PV, but not with somatostatin [21]. Consist-
ently, a recent study using MOR-mCherry transgenic mice 
has clearly demonstrated that the expression of MOR in the 
CA1 pyramidal layer belongs to the presynaptic terminals 
of GABAergic interneurons, but not likely to the pyrami-
dal neurons [26]. Taken together, these previous findings 
have suggested that MORs are most frequently found in 
the GABAergic interneurons, especially in PV-containing 
interneurons, which phasically inhibit the activities of gran-
ule cells and pyramidal neurons (Table 1 and Fig. 1).

Meanwhile, whether non-neuronal cells, such as astro-
cytes, express MOR has been a controversial issue. A 
research group led by Hauser reported that primary cul-
tured hippocampal astrocytes exhibit only little amounts 
of MOR [47]. Three years later, the same group demon-
strated that primary cultured astrocytes from various brain 
regions, including cortex and hippocampus, express MOR 
[48]. Although in vivo evidence of astrocytic MOR in the 
hippocampus had been lacking, recent lines of evidence have 
clearly demonstrated the expression of MOR on astrocytes 
in the hippocampus, ventral tegmental area, and the nucleus 
accumbens by utilizing MOR-mCherry, MOR-knock-out 
transgenic mice, and two different antibodies validated 
with MOR specific-short hairpin RNA (shRNA) [26, 49] 
(Table 1). An ultrastructural investigation with electron 
microscopy further revealed that MOR is mainly localized 
in the soma and processes, but rarely in the microdomains 
of hippocampal astrocytes [26]. In addition to astrocytes, 
microglia are also reported to express MOR in the murine 
cerebral cortex, hippocampus, and striatum (Table 1) [50]. 
These findings have raised a possibility of neglected role of 
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glial, especially astrocytic, MOR in various behavioral and 
cognitive functions including conditioned place preference 
(CPP) and opioid addiction, which had been attributed solely 
to interneuronal MOR in the hippocampus.

The canonical signaling pathway of MOR 
via inhibitory neurons

MOR is found in all portions of PV-positive inhibitory 
interneurons, especially in axonal processes and ter-
minals. A previous study has demonstrated that many 

MOR-positive terminals contact NMDAR-positive den-
drites and form inhibitory synapses with each other [51]. 
This finding has raised a possibility that endogenous or 
exogenous MOR agonists (e.g., beta-endorphin, morphine, 
or some exorphins targeting MOR such as casomorphine) 
may activate MOR to suppress GABAergic activity, thus 
boosting excitatory action of dentate granule cells or 
pyramidal neurons by GABAergic disinhibition. Indeed, 
whole-cell patch clamp recordings of dentate granule 
cells showed that MOR activation reduced the amplitude 
of inhibitory post-synaptic currents evoked by electrical 
stimulation (eIPSCs) [52].

Table 1  Cellular distribution of MOR in hippocampus

SO striatum oriens, SR stratum radiatum, SP stratum pyramidale, SLM stratum lacunosum-moleculare, Slu stratum lucidum, OML outer molecu-
lar layer, GCL granule cell layer, NSCs neural stem cells, PV parvalbumin, SOM somatostatin, NPY neuropeptide Y, VIP vasoactive intestinal 
peptide

Sub-region Layer Species Cell type Subcellular location References

CA1 SO Rat Interneuron (PV, SOM, NPY, VIP, and calretinin) Axon, Dendrite, Terminal [19]
SP Rat Interneuron (PV, SOM, NPY, VIP, and calretinin) Terminal, Axon, Dendrite [19]
SR Mouse Astrocyte Soma, Process [26, 28, 62]

Rat, Mouse Interneuron (PV, SOM, NPY, VIP, and calretinin) Axon, Terminal, Dendrite [19–21, 26, 29]
SLM Rat Interneuron (PV, SOM, NPY, VIP, and calretinin), 

Pyramidal-shaped neuron
Axon, Dendrite, Terminal [19, 22]

CA3 SP Rat Unidentified Process [22]
Slu Rat Granule cell (DG) Axon process (mossy fiber) [111]
SLM Rat Unidentified Process [22]
- Rat - - [84, 112]

DG OML Rat Interneuron (PV) Dendrite, Terminal [21]
Rat Granule cell (very small portion) Dendrite [22]

GCL Rat Interneuron
(PV, calretinin-containing)

Soma, Terminal, Dendrite [21]

Hilus Rat Cholinergic and GABAergic neuron (PV, SOM) Soma, Terminal, Dendrite [21, 113]
- Rat NSCs - [114]

- - Human Microglia - [50]

SO

SP

SR

SLM

Hippocampus (CA1)

SP

Slu

SLM

Hippocampus (CA3)

DG

Hilus

Hippocampus (DG)

ML

GCL
CA3 ??

Fig. 1  Schematic diagrams of the MOR distribution in hippocampus 
region (CA1, CA3, and DG). Color of cell indicates cell types: gold, 
inhibitory neuron; green, pyramidal neuron; blue, granule cell; yel-
low, astrocyte. MOR is indicated in brown. DG dentate gyrus, SO 

stratum oriens, SP stratum pyramidale, SR stratum radiatum, SLM 
stratum lacunosum-moleculare, Slu stratum lucidum, ML molecular 
layer, GCL granule cell layer
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How does MOR activation suppress the GABAergic 
activity on the inhibitory interneurons? The activation of 
neuronal MOR is well documented to cause presynaptic 
depression through inhibition of N- and P/Q-type voltage-
gated calcium channels [23]. In addition, activation of MOR 
causes dissociation of G-protein βγ-subunits  (Gβγ) from an 
inactive heterotrimeric G-protein complexes (Gαβγ), and the 
Gβγ binds to and opens G-protein-coupled inwardly-recti-
fying potassium (GIRK) channels [53] (Fig. 2a, b). MOR 
also activates voltage-gated potassium channels [54] and 

increases the conductance of M-type potassium channels in 
hippocampus [55]. Through the potassium channels, potas-
sium efflux leads to hyperpolarization of the cell mem-
brane, which reduces the inhibitory action of interneurons 
[56]. Indeed, an endogenous MOR agonist, enkephalin was 
reported to hyperpolarize GABAergic interneurons [24]. 
This is how MOR has been thought to increase the activity 
of excitatory neurons through disinhibition. Furthermore, 
opioids are also known to exert analgesic effects through 
MOR-mediated disinhibition [57, 58].
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Fig. 2  Cellular mechanisms underlying how hippocampal MOR 
activation enhances synaptic transmission and plasticity. a Sche-
matic diagram of hippocampal synapses. b Schematic diagram of 
interneuronal MOR signaling through disinhibition via membrane 
hyperpolarization of GABAergic interneuron. MOR activation in 
the interneurons dissociates  Gβγ from heterotrimeric G-protein com-
plex, leading to the opening of GIRK by  Gβγ binding. Potassium 
efflux through GIRK causes hyperpolarization of the interneurons, 
which decreases GABA release and causes GABAergic disinhibi-
tion. c Schematic diagram of astrocytic MOR signaling through 
glutamate release. MOR activation in the astrocytes dissociates  Gβγ 
from heterotrimeric G-protein complex, leading to the opening of 
TREK-1 by  Gβγ binding. Glutamate release through TREK-1 binds 

to mGluR1, which is localized in the axonal process of presynap-
tic neurons, causing glutamatergic axonal excitability. d Schematic 
diagram of the alteration of glutamatergic synaptic transmission 
at SC-CA1 synapses. CA1 cornu ammonis 1, CA3 cornu ammonis 
3, DG dentate gyrus, SC Schaffer collateral, MF mossy fiber, MOR 
μ-opioid receptor, Gαi G-protein alpha I subunit. Gβγ G-protein beta 
gamma complex, GIRK G-protein-coupled inwardly-rectifying potas-
sium channel, GABAA GABAA receptor, GABAB GABAB receptor, 
Glu glutamate, mGluR1 metabotropic glutamate receptor 1, TREK-1 
TWIK-related potassium channel, AMPAR α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid receptor, NMDAR N-methyl-D-
aspartate receptor
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The MOR-mediated reduction in GABA release causes 
a suppression of both  GABAA and  GABAB receptor-medi-
ated inhibitory signaling. MOR activation is also reported to 
facilitate the propagation of excitatory activity in CA1 hip-
pocampus of a rat by disinhibition of all anatomical layers 
through a suppression of  GABAA receptor signaling [59]. In 
addition to  GABAA receptor signaling, it is also suggested 
that MOR activation hinders  GABAB-mediated hyperpolari-
zation in CA1 hippocampus to boost the excitatory activity 
[60]. These findings together indicate that MOR activation 
in the GABAergic interneurons causes a suppression of 
GABAergic interneuronal activity, which in turn disinhib-
its the excitatory neurons in the hippocampus. So far, this 
mechanism, i.e. disinhibition through interneuronal MOR, 
has been accepted as the sole contributor of the MOR-medi-
ated excitation in the hippocampus.

The novel signaling pathway of MOR 
involving astrocytes

In addition to GABAergic interneurons, MOR is highly 
expressed in astrocytes of the hippocampus [26]. Astro-
cytic MOR is mainly localized in the soma and processes, 
but rarely in the microdomains which form a tripartite syn-
apse [26, 28]. This subcellular distribution of MOR in the 
hippocampal astrocytes is coinciding with TREK-1- and 
TWIK-1-containing K2P channels, which is known to be 
a glutamate-releasing channel in the astrocytes [27, 28]. 
The TREK-1- and TWIK-1-containing K2P channels can 
be opened upon the activation of astrocytic MOR and other 
Gi-GPCRs  (GABABR,  CB1R, and  A1R) through dissocia-
tion of  Gβγ which binds to N-terminus of TREK-1 (Fig. 2a, 
c) [27, 28]. Subsequently, intracellular glutamate is released 
through TREK-1- and TWIK-1-containing K2P channels in 
a  Ca2+-independent manner [27, 28].

The glutamate released upon the activation of astrocytic 
MOR exerts an excitatory action through binding to group 
I metabotropic glutamate receptors (mGluRs), especially 
mGluR1 [61, 62]. mGluR1 is predominantly expressed on 
the axon strands of presynaptic neurons [62]. The astrocytic 
glutamate released upon MOR activation binds to axonal 
mGluR1, leading to an enhancement of the axonal excit-
ability and subsequent increase in the probability of presyn-
aptic glutamate release at the Schaffer collateral-CA1 (SC-
CA1) synapses of the hippocampus [62] (Fig. 2c, d). Finally, 
the activation of astrocytic MOR, a classical inhibitory 
Gi-GPCR, exerts a paradoxical excitatory action through 
astrocytic glutamate release and this mechanism is entirely 
distinct from the action of interneuronal MOR. Based on 
these recent studies, the novel mechanism involving astro-
cytic MOR has made a debut as an alternative contributor 

to the MOR’s ability to boost excitatory signaling in the 
hippocampus.

Synaptic transmission enhancement 
through two distinct MOR signaling 
pathways

Since 1990s, several reports demonstrated that activation 
of MOR enhances glutamatergic synaptic transmission and 
plasticity at the hippocampal mossy fiber-CA3 synapses 
[63, 64], SC-CA1 synapses [62, 65], and the perforant path-
dentate granule cell synapses [66, 67]. In the early 1990s, 
Martinez group has demonstrated that opioid receptors, 
especially MORs, are involved in the induction of long-
term potentiation (LTP) at hippocampal mossy fiber-CA3 
synapses [63, 64, 68, 69], which was also validated by other 
groups [70, 71]. A few years later, McQuiston group uti-
lized voltage sensor imaging for an in-depth study of the 
layer-specific actions of MOR activation. They have demon-
strated that MOR activation facilitates the excitatory activity 
more sensitively in stratum pyramidale, oriens, and radia-
tum, but less in stratum lacunosum-moleculare [59, 72]. 
Another group has also proposed that acute treatment of 
fentanyl, which is a strong agonist of MOR, dose-depend-
ently increases the field excitatory post-synaptic potentials 
(fEPSPs) at the Schaffer collateral-CA1 (SC-CA1) synapses 
[73]. In addition to LTP, hippocampal MOR has been also 
implicated in the induction of long-term depression (LTD) 
at SC-CA1 synapses [38, 74].

This effect of hippocampal MOR in excitatory synaptic 
potentiation can be attributed to either GABAergic disinhibi-
tion or glutamate release from astrocyte or both. Until now, 
the excitatory action exerted upon MOR activation has been 
mostly ascribed to GABA-mediated disinhibition [73, 75, 
76] based upon previous reports of the exclusive expression 
of MOR in the inhibitory interneurons [22]. In detail, MORs 
are known to act exclusively by hyperpolarizing inhibitory 
interneurons and suppressing inhibitory synaptic transmis-
sion, which translates into an increase in excitatory activity 
in the hippocampus. This was coincident with the findings 
that MOR-dependent augmentation of excitatory synaptic 
transmission is mediated by a suppression of both  GABAA 
[59] and  GABAB receptor-mediated hyperpolarization [60].

On the other hand, some contradictory data from elec-
trophysiological experiments have been reported. A recent 
study reported that the enhancement of evoked EPSC 
(eEPSC) and evoked EPSP (eEPSP) by DAMGO ([D-
Ala2, N-MePhe4, Gly-ol]-enkephalin), the MOR agonist, 
was observed even in the presence of  GABAA and  GABAB 
blockers, bicuculline and CGP55845, respectively, in the 
CA1 hippocampus [62]. This surprising result suggested 
that the disinhibitory action of MOR might be a minor 
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contributor to the enhancement of eEPSC and eEPSP. In 
an attempt to resolve this conflict, we performed an addi-
tional experiment of whole-cell patch clamp recording to 
measure eEPSC in the presence or absence of bicuculline 
and CGP55845 (Fig. 3). Surprisingly, we were able to reca-
pitulate that the DAMGO-induced enhancement of eEPSC 
was indistinguishable between the absence and presence of 
bicuculline and CGP55845 (Fig. 3). These additional find-
ings indicate that, in addition to GABAergic disinhibition, 
there is another critical player in the excitatory action of 
MOR, the astrocytic MOR [26, 28, 62]. These results raise 
a surprising possibility that the astrocytic MOR could be 
the major contributor to the excitatory action of MOR in the 
CA1 hippocampus.

The activation of astrocytic MOR in the dorsal hippocam-
pus can induce a fast glutamate release through TREK-
1- and TWIK-1-containing K2P channels, as revealed by 
sniffer patch technique [28] and astrocytic glutamate sensor 
(iGluSnFr) imaging in CA1 hippocampus [62]. An inves-
tigation with whole-cell patch clamp of CA1 pyramidal 
neurons has demonstrated that astrocytic MOR activation 
also causes a significant decrease in the paired pulse ratio 
and a dramatic increase in the frequency of spontaneous 
excitatory post-synaptic currents (sEPSCs) without affect-
ing sEPSC amplitude, indicating an increased presynaptic 
release at the glutamatergic SC-CA1 synapses. Moreover, 
this enhancement of synaptic transmission by MOR activa-
tion further led to an induction of the NMDAR-dependent 
LTP with subthreshold stimulation at SC-CA1 synapses 
of the hippocampus [62]. The astrocytic MOR-dependent 
enhancements of synaptic transmission and LTP induction 
were dependent on presynaptic mGluR1. More importantly, 
DAMGO-induced enhancements of synaptic transmission 
and LTP in the hippocampal slices were not attributed to 
GABAergic disinhibition, as most of the experiments were 

performed in the presence of  GABAA and  GABAB blockers 
[62]. Furthermore, the study also revealed that DAMGO’s 
action was much more potent in increasing the frequency of 
sEPSC  (EC50 = 0.49 nM) than in reducing the frequency of 
sIPSC  (IC50 = 50.67 nM) [62]. These findings indicate that 
DAMGO-induced enhancement of glutamatergic transmis-
sion is less likely mediated by the suppression of GABAer-
gic transmission. Taken together, the recent lines of evidence 
suggest that the astrocytic glutamate release upon MOR 
activation is a more predominant contributor to the excita-
tory action of MOR agonists, compared to the disinhibitory 
action of interneuronal MOR.

Opioid‑associated contextual memory 
formation by hippocampal astrocytic MOR

The MOR agonists, such as morphine and DAMGO, are well 
known to induce CPP through the disinhibition of meso-
corticolimbic dopamine system by suppressing GABAergic 
transmission [77]. Although mesocorticolimbic dopamine 
system is critical for wanting/motivational aspect of CPP, 
there is another major aspect to CPP: spatial learning and 
memory. The precise mechanism of spatial learning and 
memory in CPP is not very well understood.

The hippocampus is critical to the formation of contex-
tual memory, especially to the opioid-associated contex-
tual memory. Several studies have demonstrated the causal 
relationship between the hippocampus and MOR-induced 
CPP. A lesion study previously demonstrated that the 
hippocampus is necessary for systemically administered 
morphine-induced CPP [78]. The necessity of hippocam-
pal MOR for opioid-induced CPP was also demonstrated 
by pharmacological blockade of MOR through intra-
hippocampal infusion of a specific antagonist of MOR, 

Fig. 3  DAMGO enhances 
eEPSC at SC-CA1 synapse, 
which is not mediated by 
GABAergic disinhibition. 
DAMGO-mediated enhance-
ment of eEPSC amplitude 
was not further increased by 
treatment with bicuculline and 
CGP55845, which are blockers 
against  GABAA and  GABAB 
receptors, respectively. Orange 
trace is originated from Nam 
et al. Cell Reports (2019). 
DAMGO [D-Ala2, N-MePhe4, 
Gly-ol]-enkephalin, Bic bicucul-
line, CGP CGP55845, EPSC 
excitatory post-synaptic current, 
ns non-significant
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D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) [62]. 
In addition to the necessity of hippocampal MOR, the suf-
ficiency was also demonstrated by intra-hippocampal injec-
tion of morphine, which was sufficient to induce CPP in rats 
[79]. These reports have suggested that the hippocampus is 
sufficient and necessary for morphine-induced CPP. How-
ever, to date, there has been no study using cell-type spe-
cific gene-modulation of MOR, possibly due to the strong 
belief that MOR is exclusively expressed in GABAergic 
interneurons.

In 2019, a study utilizing the genetic strategy of cell-
type specific gene-silencing of MOR systematically tested 
the possible contribution of MORs of pyramidal neurons, 
GABAergic interneurons, or astrocytes in the CA1 hip-
pocampus to the DAMGO-induced CPP [62]. The study 
demonstrated that astrocytic MOR, but not of pyramidal 
neurons and interneurons, was necessary for CPP by both 
intra-CA1 infusion and systemic administration of DAMGO 
[62]. Moreover, this study also demonstrated that astrocyte-
specific expression of MOR in the CA1 hippocampus recov-
ered systemic DAMGO or morphine-induced CPP in the 
MOR-deficient mice [62]. These findings indicate that the 
astrocytic MOR in CA1 hippocampus is sufficient and nec-
essary for CPP, establishing a causal relationship between 
the two.

Consistently, several other previous reports have alluded 
to the idea that another player besides GABAergic disin-
hibition is required for CPP. Subcutaneous administration 
of morphine (1 mg/kg) is well documented as sufficient to 
induce CPP in rats [80]. If this CPP is induced by GABAe-
rgic disinhibition, the concentration of morphine in the 
brain should be enough to inhibit sIPSCs. However, pre-
vious pharmacokinetics reports point to the fact that the 
concentration of morphine in the brain after subcutaneous 
administration may not be enough to inhibit sIPSCs. It has 
been reported that after intravenous injection of morphine 
(10 mg/kg), the maximum concentration of morphine in the 
brain is ~ 120 ng/mL, which is equivalent to 0.42 μM [81]. 
The subcutaneous administration of morphine (1 mg/kg) 
can be assumed to reach the brain with the concentration 
of under 0.042 μM after accounting for the fact that subcu-
taneous administration is generally less effective to reach 
the brain compared to intravenous administration. Another 
report demonstrated that such a low dose of morphine (under 
0.1 μM) merely inhibits sIPSC frequency (~ 20%), and the 
 IC50 of morphine to inhibit sIPSC frequency is about 2 μM 
[25]. Taken together, these findings suggest that low dos-
age morphine-induced CPP is less likely to be mediated by 
GABAergic disinhibition, but more likely mediated by other 
players such as astrocytic MOR.

Since the hippocampus contains a high density of endog-
enous MOR agonists such as enkephalin [40], it is possible 
that the hippocampal MORs contribute to the acquisition 

and retrieval of spatial memory. Indeed, MOR null knock-
out mice showed an impaired spatial memory in eight-arm 
radial maze and Morris water maze tests with impaired LTP 
at mossy fiber to CA3 synapses [71, 82]. A few years later, 
another report insisted that the impaired task performance in 
the Morris water maze test was attributed to a motivational 
deficit (namely, a deficit in dopamine signaling), but not a 
learning deficit [83]. However, there was a report showing 
that the CA3-specific pharmacological blockade of MOR 
by β-funaltrexamine (β-FNA) caused a significant impair-
ment in the acquisition and retrieval of spatial learning [84]. 
On the other hand, a recent study reported a normal spatial 
memory of MOR null knock-out mice in the passive avoid-
ance test [62]. Taken together, unlike opioid-associated spa-
tial memory, the contribution of hippocampal MOR to the 
non-opioid-associated spatial memory is still controversial. 
Future investigations are needed to establish the precise 
role of MOR in the acquisition of spatial memory in the 
hippocampus.

Other behavioral roles of hippocampal MOR

Adult neurogenesis Several previous studies have revealed 
that the chronic administration of opioids negatively influ-
ences adult hippocampal neurogenesis [85–87], which is 
correlated to the hippocampus-dependent learning ability 
[88, 89]. Among the multi-stage process of neurogenesis 
(i.e., proliferation, differentiation, migration, and matura-
tion), the chronic exposure to morphine is reported to nega-
tively affect proliferation [85, 90, 91], decrease the survival 
of newborn cells [86] and interrupt maturation [85]. Moreo-
ver, MOR null knock-out mice show an increase in the sur-
vival rate of newborn cells without affecting proliferation 
rate, leading to the increased number of granule cells and 
increased layer volume in the granule cell layer of the den-
tate gyrus [92]. Nonetheless, the precise mechanism of how 
MOR negatively influences hippocampal neurogenesis has 
not been fully elucidated. Meanwhile, MOR was recently 
reported to be expressed in hippocampal astrocytes [26, 62], 
with close contact with neural stem cells and an ability to 
affect their proliferation and differentiation [93]. Moreover, 
astrocytic glutamate uptake is reported to be critical for adult 
neurogenesis [94], implying that astrocytic glutamate release 
might also affect adult neurogenesis. To sum up, the role 
of astrocytic MOR in the adult hippocampal neurogenesis 
needs to be investigated in the future.

Seizure  Seizures are known to modify hippocampal 
distribution of MORs and vice versa. The protein density, 
mRNA level, and basal binding affinity of MOR are higher 
in the hippocampus of human post-mortem brains with epi-
lepsy [95]. Seizures increase the MOR immunoreactivities 
in the inner molecular layer where GABAergic interneurons 
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are mostly located, but lower than in the granule cell layer 
and hilus of DG where excitatory neurons are mostly located 
[11, 34, 35]. In addition to the alteration of the receptor, the 
mRNA and hormone levels of enkephalin are increased in 
the hippocampus of human epileptics and the hippocampus 
of several epileptic rodent models [39, 96–100]. Increased 
MOR signaling could contribute to seizure development by 
altering excitation/inhibition (E/I) balance towards excita-
tion, possibly through MOR-mediated enhanced disinhi-
bition. In contrast, several reports have demonstrated that 
MOR agonists such as morphine and beta-endorphin also 
increased the susceptibility to seizures [101, 102], while 
only few studies reported that systemic application of MOR 
agonist results in an anti-convulsant effect [103]. These 
results strongly suggest an interesting possibility of MOR 
involvement in epilepsy. In addition to MOR, KOR, and 
DOR are also highly implicated in seizure pathology [11]. 
It will be of great interest to determine whether the disin-
hibitory action or astrocytic MOR is critical to the role of 
MOR in seizures.

Stress-induced memory impairment Learning and mem-
ory is strongly affected by stress, which is known to facilitate 
LTD in CA1 hippocampus [104, 105]. Two recent studies 
have demonstrated that acute stress-induced memory impair-
ment is mediated by GABAergic interneuronal MOR, but 
not by astrocytic or excitatory neuronal MOR [37, 38]. The 
authors showed that an acute elevated platform (EP) stress 
caused the activation of the GABAergic interneuronal MOR 
in the hippocampus, possibly by upregulation of endogenous 
MOR agonists [37, 38, 106]. In turn, GABAergic feedfor-
ward and feedback inhibition of CA1 pyramidal neurons 
is attenuated and LTD at SC-CA1 glutamatergic synapses 
is facilitated [38]. These results implicate the engagement 
of GABAergic interneuronal MOR in acute stress-induced 
memory impairment. As stress-induced upregulation of 
endogenous MOR agonists can also affect astrocytic MOR 
in the hippocampus, future investigations on the alteration 
of astrocytic MOR signaling under stressful condition could 
be of interest.

Sexual dimorphism of hippocampal MOR A recent study 
reported that the MOR-mediated response to stress is sex-
dependent due to the sexual dimorphic phenotype of MOR 
[107]. Indeed, the MOR trafficking in PV-positive neurons 
and enkephalin level are positively regulated by gonadal hor-
mones, especially ovarian hormones [108, 109]. In detail, 
MOR trafficking in the hippocampal PV-positive interneu-
rons is increased in the proestrus phase (relatively high 
estrogens) of a female rat, as compared to diestrus phase 
[109]. This sexual dimorphism of hippocampal μ-opioid 
signaling leads to sex-dependent behavior of MOR. For 
example, MOR-mediated regulation of mossy fiber trans-
mission is distinct only in females [110]. More interestingly, 
acute immobilization stress increased the immunoreactivity 

of phosphorylated MOR in the hippocampus of male, did not 
alter it in the diestrus female, and significantly decreased it 
in proestrus female rats [111]. Not only the protein level, 
but also the MOR trafficking is sex-differentially altered by 
acute stress: decreased in females and increased in males 
[107, 109]. These previous findings have proposed the estro-
gen-dependent sexual dimorphism of hippocampal μ-opioid 
signaling, which affects its response to acute stress. All the 
current studies on sexual dimorphism of MOR have only 
focused on MOR of GABAergic interneurons. Based on 
recent evidence of astrocytic MOR [26, 62], the possible 
sex-dimorphic alteration of the expression and trafficking of 
astrocytic MOR requires further investigation.

Summary

We have comprehensively reviewed the cellular expres-
sion of MOR, its signaling pathways, and its behavioral 
and cognitive function in the hippocampus. While MOR 
in the GABAergic interneurons has long been focused on, 
the presence and function of MOR in the astrocytes have 
only recently been investigated. Activation of interneuronal 
MOR causes membrane hyperpolarization and suppresses 
GABAergic synaptic transmission leading to disinhibition of 
pyramidal neurons in the CA1 and granule cells in the den-
tate gyrus. Therefore, MORs of the GABAergic interneurons 
are considered as the major contributors of hippocampal 
MOR signaling. However, recent studies have revealed that 
hippocampal astrocytes express MOR, and the activation 
of the astrocytic MOR causes glutamate release to enhance 
glutamatergic synaptic transmission at SC-CA1 synapses. 
Furthermore, astrocytic MOR activation, but not interneu-
ronal MOR activation, mainly contributes to MOR-mediated 
enhancement of synaptic transmission in the hippocampus 
and opioid-mediated contextual memory. Lastly, hippocam-
pal MOR signaling is engaged in hippocampal neurogen-
esis, seizure, and stress-induced memory impairment, which 
are reportedly dependent on MOR-mediated disinhibition 
of principal hippocampal cells. Further investigations are 
needed to determine the contribution of astrocytic MOR to 
these pathophysiological functions.
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