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Forebrain-specific ablation of phospholipase Cγ1 causes
manic-like behavior
YR Yang1,2,13, JH Jung3,13, S-J Kim3, K Hamada4, A Suzuki4, HJ Kim3, JH Lee3, O-B Kwon3, YK Lee5, J Kim6, E-K Kim1, H-J Jang1, D-S Kang1,
J-S Choi5, CJ Lee6, J Marshall7, H-Y Koh6, C-J Kim8, H Seok9, SH Kim10, JH Choi1, Y-B Choi11, L Cocco12, SH Ryu3, J-H Kim3 and P-G Suh1

Manic episodes are one of the major diagnostic symptoms in a spectrum of neuropsychiatric disorders that include schizophrenia,
obsessive-compulsive disorder and bipolar disorder (BD). Despite a possible association between BD and the gene encoding
phospholipase Cγ1 (PLCG1), its etiological basis remains unclear. Here, we report that mice lacking phospholipase Cγ1 (PLCγ1) in
the forebrain (Plcg1f/f; CaMKII) exhibit hyperactivity, decreased anxiety-like behavior, reduced depressive-related behavior,
hyperhedonia, hyperphagia, impaired learning and memory and exaggerated startle responses. Inhibitory transmission in
hippocampal pyramidal neurons and striatal dopamine receptor D1-expressing neurons of Plcg1-deficient mice was significantly
reduced. The decrease in inhibitory transmission is likely due to a reduced number of γ-aminobutyric acid (GABA)-ergic boutons,
which may result from impaired localization and/or stabilization of postsynaptic CaMKII (Ca2+/calmodulin-dependent protein
kinase II) at inhibitory synapses. Moreover, mutant mice display impaired brain-derived neurotrophic factor-tropomyosin receptor
kinase B-dependent synaptic plasticity in the hippocampus, which could account for deficits of spatial memory. Lithium and
valproate, the drugs presently used to treat mania associated with BD, rescued the hyperactive phenotypes of Plcg1f/f; CaMKII mice.
These findings provide evidence that PLCγ1 is critical for synaptic function and plasticity and that the loss of PLCγ1 from the
forebrain results in manic-like behavior.
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INTRODUCTION
Synapse formation and function are tightly regulated by multiple
signaling cascades, and disruption of such synaptic signaling
pathways is implicated in various neuropsychiatric disorders.1

Among those, impairment of the phospholipase Cγ1 (PLCγ1)-
mediated pathway appears to be causally linked to neuropsychia-
tric disorders such as depression,2 epilepsy3 and bipolar disorder
(BD).4–6 PLCγ1 generates the second messengers inositol-1,4,5-
triphosphate (IP3) and diacylglycerol via the hydrolysis of
membrane-bound phosphatidylinositol 4,5-bisphosphate when
triggered by multiple neurotransmitters and neuromodulators.
Multiple genome-wide association studies identified PLC signaling
as a pathway that contributes to the risk for BD,7 although the
association was recently challenged.8 A genome-wide linkage
analysis study also identified a gene encoding phospholipase Cγ1
(PLCG1) as a susceptibility locus for BD.9 Indeed, BD patients with a
dinucleotide repeat in the PLCG1 genomic region are good
responders to lithium, suggesting involvement of the PLCγ1
signaling pathway in BD.4 Interestingly, PLCγ1 controls recycling of
IP3, which is modulated by lithium.10 Brain-derived neurotrophic
factor (BDNF), a regulator of diverse synaptic functions, regulates

PLCγ1 activity.11 Moreover, a BDNF gene polymorphism has been
identified as a potential risk allele for BD.12,13 However, despite
this, it remains unclear whether and how dysfunction of
BDNF/PLCγ1 signaling contributes to the lithium-responsive
symptoms of BD.
Here, we found that mice with forebrain-selective deletion of

PLCγ1 (Plcg1f/f; CaMKII mice) exhibit manic-like behavior, as well as
deficits in inhibitory transmission and BDNF-dependent synaptic
plasticity. We also discovered potential molecular mechanisms
whereby the disruption of PLCγ1 signaling in the hippocampus
leads to such dysfunctions of inhibitory synapses. Those synaptic
deficits could contribute to at least some of the manic behavioral
phenotypes displayed by mutant mice. Given the limited number
of animal models that are able to fulfill the validity criteria for
manic-like behavior,14 Plcg1f/f; CaMKII mice may be a reliable
model for the manic phase of BD.

MATERIALS AND METHODS
Detailed descriptions of the Methods and materials are included in the
Supplementary Methods section.
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Mice
CaMKII-Cre15 and Nestin-Cre16 mice were obtained from the Jackson
Laboratory (Bar Harbor, ME, USA) and housed under a 12- h light–dark
cycle and given access to food and water ad libitum. Only male mice were
used for physiological and behavioral analyses. All procedures were
approved by the Institutional Animal Care and Utilization Committee of
POSTECH and conducted in accordance with the UNIST Guide for the Care
and Use of Laboratory Animals (UNISTIACUC-14-005).

Generation of PLCγ1 conditional knockout mice
The Plcg1-targeting vector was designed to delete exons 3− 5 by inserting
loxP sites into introns 2 and 5. The Neo cassette flanked by FRT sites was
inserted into intron 5 adjacent to the second loxP site. The Plcg1-targeting
vector DNA construct was electroporated into mouse embryonic stem cells
and single clones were microinjected into blastocysts. The F1 mice were
then crossed with flippase transgenic mice to eliminate the FRT-Neo

cassette. Plcg1-floxed mice, originally on a mixed 129×C57BL/6 back-
ground (Supplementary Figure 1a), were backcrossed with C57BL/6 mice
for at least eight generations before the experiments. The targeted allele
was detected with 5′ and 3′ probes by Southern blotting analysis with
EcoRI digestion (Supplementary Figure 1b). The Plcg1+/+, Plcg1f/+ and
Plcg1f/f mice were genotyped using primer 1 (5′-GCACAGCAGACAGA
CTTGGAC-3′) and primer 2 (5′-GTTGCTCAAGGTGAAGGCTCT-3′) (Supple-
mentary Figure 1c). Deletion of exons 3–5 was achieved by crossing
Plcg1f/+ mice with CaMKII-Cre mice or Nestin-Cre mice to produce postnatal
forebrain- and brain-specific Plcg1-knockout mice, respectively.

Statistical analysis
Statistical analyses were performed using SPSS (version 17.0) and the
normality of the data distribution was assessed using the Kolmogorov–
Smirnov test. Student’s unpaired T-test, nonparametric Mann–Whitney
U-test or analysis of variance followed by Tukey’s post hoc test was

0

5000

10000

15000

20000

25000

30000

To
ta

l d
is

ta
nc

e 
(c

m
)

**

D
is

ta
nc

e 
(c

m
)

*

0

500

1,000

1,500

2,000

2,500

3,000

5 10 15 20 25 30

Time (min)

0

50

100

150

200

250

Ti
m

e 
in

 o
pe

n 
ar

m
s 

(s
ec

)

0

5

10

15

20

25

30

35

O
pe

n 
ar

m
 e

nt
ry

 n
um

be
r

**

0

50

100

150

200

C
en

te
r r

eg
io

n 
tim

e 
(s

ec
) *

Plcg1 ; CaMKIIWT

0

500

1000

1500

2000

2500

D
is

ta
nc

e 
in

 c
en

te
r (

cm
) **

** ** **
**

WT

Plcg1 ; CaMKII

Plcg1 ; CaMKIIWT

0

1

2

3

4

5

M
ar

bl
es

 b
ur

ie
d

Plcg1 ; CaMKIIWT

Plcg1 ;CaMKII

WT

0

10

20

30

40

50

60

70

80

Jumping Digging

Ti
m

e 
in

 re
pe

tit
iv

e 
be

ha
vi

or
s 

(s
ec

)

***

***

- - +  +   - - +  +   - - +   +

Actin

Hip Ctx Str

Mid Hypo CB

Cre - - +  +   - - +  +   - - +   +

Cre

Actin

0

50

100

150

Im
m

ob
ili

ty
 ti

m
e 

(s
ec

)

****

40

50

60

70

80

90

100

Pr
ef

er
en

ce
 (%

)

*
*

W
/W S/
S

D
ay

 5
_S

/W

D
ay

 6
_S

/W

D
ay

 7
_S

/W

Plcg1f/f; CaMKII
WT

Plcg1 ; CaMKII
WT

Plcg1 ; CaMKIIWT

0

10

20

30

40

0

20

40

60

1 2 3
0

10

20

30

40

50

60

In
hi

bi
tio

n 
ra

tio
 (%

)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

70 75 80 85 90 95 100105110115120

St
ar

tle
 re

sp
on

se
 (m

V)

Sound Level (dB)

**
*

**

**

Context recall

%
 o

f f
re

ez
in

g

0

20

40

60

80

100

Ti
m

e 
ex

pl
or

in
g 

(s
ec

)

Plcg1 ; 
CaMKII

WT

**
**

NS

WT
Plcg1 ; CaMKII

Plcg1 ; CaMKII
WT

WT
Plcg1 ; CaMKII

Plcg1 ; CaMKII
WT

*

*

Trial

%
 o

f f
re

ez
in

g

Familiar
Novel

0

20

40

60

80

100

Tone recall

**

%
 o

f f
re

ez
in

g

85 dB

PLCγ1

PLCγ1

Figure 1. Plcg1f/f; CaMKII mice harboring phospholipase Cγ1 (PLCγ1) deletion in the forebrain exhibit manic-like behavior. (a) Western blots
showing loss of PLCγ1 from the forebrain of Plcg1f/f; CaMKIImice (hippocampus, Hip; cortex, Ctx; striatum, Str) but not from the midbrain (Mid),
hypothalamus (Hypo) or cerebellum (CB). (b and c) Locomotor activity of wild-type (WT) and Plcg1f/f; CaMKII mice in the open field test
(n= 8–10 per group), (d) the elevated plus maze test (n= 10–12 per group), (e) the marble burying test (n= 11–12 per group), (f) the forced
swimming test (n= 11–12 per group), (g) the two-bottle sucrose preference test (WT, n= 5 vs Plcg1f/f; CaMKII, n= 9) (two-bottle choice
(W; water, S; sucrose)). (h) Jumping and digging behavior (WT, n= 9 vs Plcg1f/f; CaMKII, n= 6). (i) The novel object recognition test (n= 12 per
group). (j) Cued fear conditioning in WT and Plcg1f/f; CaMKIImice (WT, n= 11 vs Plcg1f/f; CaMKII, n= 10). (k) Startle response test (left graph) and
prepulse inhibition (right graph) in WT and Plcg1f/f; CaMKII mice (n= 12 per group). Error bars represent± s.e.m. ***Po0.001, **Po0.01 and
*Po0.05. CaMKII, Ca2+/calmodulin-dependent protein kinase II.
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performed, as specified in the Supplementary Tables. All data are
presented as mean± s.e.m. Significance is indicated by *P o 0.05,
**P o 0.01 and ***P o 0.001.

RESULTS
Hyperactive behavior and memory impairment in mice harboring
forebrain-specific deletion of PLCγ1
PLCγ1 signaling contributes to neuronal survival, neural circuit
development and synaptic plasticity.11,17,18 Despite its potential
importance, the pathophysiological role of PLCγ1 in mature neural
circuits is poorly understood, partly because global deletion of the
Plcg1 gene results in lethality as early as embryonic day 9.19 To
explore the effect of PLCγ1 loss on the neural function and
behavior of adult animals, we deleted PLCγ1 selectively from
forebrain neurons by crossing floxed Plcg1 mice with CaMKII-Cre
mice15 (Supplementary Figure 1). Immunoblotting indicated
significant suppression of PLCγ1 expression in forebrain areas,
including the cortex, the hippocampus and the striatum
(Figure 1a). Nissl-stained sections of brain from Plcg1f/f; CaMKII
mice revealed intact anatomical features: typical neuronal
organization of the hippocampal formation (Supplementary
Figure 2a) and unaltered number of neurons and astrocytes in
the cortex, CA1 and CA3 (cornu ammonis fields 1 and 3) regions
(Supplementary Figure 2b).
Behaviorally, we did not detect any impairment in basic motor

and visual functions in Plcg1f/f; CaMKII mice (Supplementary
Figures 3a and b). Importantly, Plcg1f/f; CaMKII mice showed
hyperactivity in the open field test (greater total distance traveled)
and spent significantly more time in the center of the field than
wild-type (WT) littermates, which is a sign of reduced anxiety
(Figures 1b and c). Consistent with the reduction of anxiety levels,
Plcg1f/f; CaMKII mice entered the open arms of the elevated plus
maze more frequently than WT littermates, although they spent a
similar amount of time in the open arms (Figure 1d). In the marble
burying test, another measure of anxiety-like behavior, Plcg1f/f;
CaMKII mice buried fewer marbles (Figure 1e). These results
indicate that mutant mice are less anxious than WT littermates.
Interestingly, Plcg1f/f; CaMKII mice showed significantly less
immobility than WT mice in the forced swimming test, which is
a measure of depression-like behavior (Figure 1f), whereas the tail
suspension test revealed no difference between the two
genotypes (Supplementary Figure 3c). In the sucrose preference
test, Plcg1f/f; CaMKII mice consumed more sucrose than WT mice
(Figure 1g), indicating that Plcg1f/f; CaMKII mice tend to be
hyperhedonic, as observed in human mania. Notably, the mutant
mice spent more time repetitively jumping, but less time in
digging in stranger-free home cages (Figure 1h). The weight of
Plcg1f/f; CaMKII mice was comparable with that of WT mice at
4 weeks, but was significantly lower at 8 weeks despite greater
food intake (Supplementary Figures 3d and e), which might be
related to increased locomotion.
BDNF-tropomyosin receptor kinase B (TrkB)-mediated PLCγ1

signaling is causally involved in learning and memory, as
evidenced by the cognitive/behavioral deficits of TrkbPLC/PLC-
knock-in mice lacking TrkB-PLCγ1 docking sites.20,21 Plcg1f/f;
CaMKII and WT mice showed a comparable ability to recognize
novel objects (Figure 1i). Next, we examined whether Plcg1f/f;
CaMKII mice also show impaired learning and memory. To this
end, we compared associative memory between the two
genotypes using the Pavlovian fear conditioning paradigms. In
the auditory fear conditioning test, Plcg1f/f; CaMKII mice exhibited
a significantly lower level of freezing response (Figure 1j). We also
observed reduced freezing in the contextual fear (Supplementary
Figure 3f). However, Plcg1f/f; CaMKII and WT mice showed similar
sensitivity to pain (Supplementary Figure 3g), suggesting that the
reduced freezing of Plcg1f/f; CaMKII mice was not due to alteration
of pain sensitivity. Unexpectedly, Plcg1f/f; CaMKII mice exhibited an

exaggerated startle response to high-decibel tones when com-
pared with WT littermates, but prepulse inhibition did not differ
from that of WT mice (Figure 1k). Thus, the deficit in acquisition
and expression of fear memory did not appear to be simply
attributable to decreased responses toward conditioning stimuli.
Taken together, these results indicate that PLCγ1 expression in the
forebrain is required for normal hippocampus-dependent mem-
ory. Importantly, Plcg1f/f; CaMKII mice showed manic-like behavior,
including hyperactivity, hyperphagia, decreased anxiety, hyperhe-
donia and impaired cognitive ability, as well as increased startle
responses.
BD patients are emotionally unstable and an episode of mania

or depression could be induced by imposed stresses.22 Accord-
ingly, BD mouse models exhibit altered behavioral states in
response to stresses. For example, Dbp−/− mice display a shift from
a depressive state to a manic-like behavior when under stress,
whereas the emotional state of Ank3+/− mice switches toward
depression-like behavior upon exposure to chronic stress.23,24 To
test whether the manic-like behavior of Plcg1f/f; CaMKII mice can
be reversed or affected by stress, we assessed the effect of
different type of stress or sleep deprivation on behavior. We found
that the manic-like behavior of Plcg1f/f; CaMKII mice was not
affected by acute restraint stress (Supplementary Figures 4a–e),
chronic social isolation stress (Supplementary Figure 4f–j) or sleep
deprivation (Supplementary Figure 5). Unlike Ank3+/− - and Dbp-
knockout mice, Plcg1f/f; CaMKII mice show hyperactivity at
baseline. The behavioral differences between Plcg1f/f; CaMKII and
BD-like mice, particularly at baseline, rendered a direct compar-
ison of the stress-induced conversion of behavioral states difficult
in this analysis.

Reduced inhibitory transmission in Plcg1f/f; CaMKII mice
Manic-like behavior and memory impairment in Plcg1f/f; CaMKII
mice prompted us to examine the possible impact of PLCγ1
deletion on synaptic transmission and synaptic plasticity. First, we
assessed glutamatergic transmission by eliciting field excitatory
postsynaptic potentials from the hippocampal CA1 area while
stimulating the Schaffer collateral (SC) pathway, but failed to
detect any difference in input–output curves between Plcg1f/f;
CaMKII mice and their WT littermates (Figure 2a). In the whole-cell
patch recording of CA1 neurons, we measured the ratios of N-
methyl-D-aspartic acid (NMDA) receptor (NMDAR)-mediated exci-
tatory postsynaptic currents to α-amino-3-hydroxy-5-methyl-4-
isoxazole propionate (AMPA) receptor-mediated EPSCs (AMPAR-
EPSCs), but again found no difference (Figure 2b). Thus, the input–
output relationship and NMDAR/AMPAR current ratios represent
intact excitatory transmission in Plcg1f/f; CaMKII mice. Consistent
with the physiological data, western blotting of crude synaptoso-
mal fractions isolated from Plcg1f/f; CaMKII and WT mice revealed
no difference in the expression levels of various postsynaptic
proteins, including AMPAR subunits (GluA1− 3), NMDAR subunits
(GluN1, 2A and 2B), neuroligins (NL1− 3) and postsynaptic density
protein-95 (Figure 2c).
To further examine the physiological roles of PLCγ1 in basal

synaptic transmission, we monitored miniature EPSCs and
miniature inhibitory postsynaptic currents (mIPSCs). The frequency
and the amplitude of miniature EPSCs were largely unaffected in
Plcg1f/f; CaMKII CA1 pyramidal neurons (Supplementary Figures 6a
and b). Consistent with miniature EPSC data, dendritic spine
densities were indistinguishable between Plcg1f/f; CaMKII and WT
mice (Supplementary Figures 6c and d). In contrast with miniature
EPSCs, the frequency (but not the amplitude) of mIPSCs was
markedly reduced in hippocampal slices from Plcg1f/f; CaMKII mice
compared with those from WT mice (Figures 2d and e). Given both
the reduced levels of PLCγ1 in the striatum and the hyperactive
locomotion of Plcg1f/f; CaMKII mice, we started to examine
changes in basal synaptic transmission in the dorsal striatum.
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Intriguingly, the amplitude of mIPSCs was significantly and
selectively reduced in the dopamine receptor D1 (D1R)-expressing
striatal neurons, but not in the dopamine receptor D2-expressing
striatal neurons of Plcg1f/f; CaMKII mice, whereas the frequency of
mIPSCs remained unaffected (Figures 2f–k). As activation of D1R-
expressing striatal neurons is sufficient to promote locomotion,25

reduced inhibitory input into D1R-expressing neurons is most
likely to increase locomotor activity, which could contribute to the
hyperactivity observed in Plcg1f/f; CaMKII mice. Taken together,
these physiological data provide evidence that the abnormal
behavior of Plcg1f/f; CaMKII mice results from defective inhibitory
inputs in the hippocampus and the striatum.
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(lower) of the synaptosomal fractions of hippocampal lysates from WT and Plcg1f/f; CaMKII mice for the following postsynaptic proteins: AMPA
receptor subunits (GluA1− 3), NMDA receptor subunits (GluN1, 2A, 2B), postsynaptic density protein-95 (PSD-95) and neuroligin 1–3 (NL1–3).
(d) Representative miniature inhibitory postsynaptic current (mIPSC) traces from WT and Plcg1f/f; CaMKII hippocampal pyramidal CA1 neurons.
(e) Average values for mIPSC frequency and amplitude (WT, n= 6 vs Plcg1f/f; CaMKII, n= 8). (f and g) Representative images of immunostained
neurobiotin-injected neurons. The recorded striatal neurons were identified either as putative dopamine receptor D1-medium spiny neurons
(D1R-MSNs) (f) or as dopamine receptor D2 (D2R)-MSNs (g) by immunostaining for the D2R-MSN marker, enkephalin. Scale bar= 50 μm.
(h and j) Representative mIPSC traces from putative D1R-MSN (h) or D2R-MSN (j) of WT and Plcg1f/f; CaMKII mice (D1: WT, n= 10 vs Plcg1f/f;
CaMKII, n= 7; D2: WT, n= 8, vs Plcg1f/f; CaMKII, n= 10). (i and k) Bar graphs for D1-MSN (i) or D2-MSN (k) mIPSC frequency and amplitude.
(l and m) Distribution of glutamic acid decarboxylase 67 (GAD67)-positive (l) or parvalbumin (PV)-positive (m) boutons (red) contacting the
somata of WT and Plcg1f/f; CaMKII hippocampal CA1 pyramidal neurons infected with lentivirus expressing GFP. (l) GAD67-positive boutons on
WT (n= 19) and Plcg1f/f; CaMKII (n= 63) somata. (m) PV-positive boutons on WT and Plcg1f/f; CaMKII somata (n= 18− 37 per group). Scale bars:
50 μm for left images and 20 μm for magnified views. Error bars represent± s.e.m. ***Po0.001 and **Po0.01. CaMKII, Ca2+/calmodulin-
dependent protein kinase II.
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Impaired formation of inhibitory synapses in PLCγ1-deficient
pyramidal neurons
Given our physiological data and the fact that the density of
glutamic acid decarboxylase 65 (GAD65), GAD67 and parvalbumin
(PV)-containing cells in the hippocampi of BD patients is
reduced,26 we hypothesized that γ-aminobutyric acid (GABA)-
ergic connections would be defective in Plcg1f/f; CaMKII mice.
Therefore, we immunostained hippocampi prepared from either
Plcg1f/f; CaMKII mice or WT littermates for GAD67, a major GABA-
producing enzyme expressed in the presynaptic terminals of
GABAergic synapses. We detected a significant decrease in GAD67
staining on the somata of the CA1 pyramidal neurons of Plcg1f/f;
CaMKII mice compared with those of WT mice, indicating a
reduced number of GABAergic boutons (Figure 2l). As

PV-expressing GABAergic interneurons causally regulate neuronal
excitability and the generation of γ-oscillations,27 we also
examined changes in GABAergic synapses from PV-positive
neurons to pyramidal neurons. There was also a significant
reduction in the number of PV-positive puncta on the somata of
pyramidal neurons in Plcg1f/f; CaMKII mice (Figure 2m). These
findings indicate that a decrease in inhibitory transmission is
attributable to a reduced number of synaptic inputs from
PV-expressing GABAergic neurons.

PLCγ1 deletion affects BDNF-TrkB-dependent synaptic plasticity
PLCγ1 is involved in BDNF-TrkB signaling-dependent long-term
potentiation (LTP).21,28,29 To investigate the possible effects of
PLCγ1 deletion on BDNF-dependent or -independent forms of
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synaptic plasticity, we induced LTP in hippocampal slices from
Plcg1f/f; CaMKII or WT mice. While neither the basal SC-CA1
excitatory transmission nor the paired-pulse ratios were affected
(Figures 2a and 3a), high-frequency stimulation-induced LTP was
successfully and similarly induced in WT and Plcg1-deficient
hippocampal slices (Supplementary Figure 7a). However, LTP
induced by θ-burst stimulation (TBS), a form of synaptic plasticity
dependent on BDNF-TrkB,30,31 was disrupted in Plcg1f/f; CaMKII
slices when compared with that in WT slices (Figure 3b). TBS-LTP
in Plcg1f/f; CaMKII mice was not rescued by application of
picrotoxin, a GABAA receptor (GABAAR) blocker (Supplementary
Figure 7b), indicating that the impairment was indifferent to any
possible impact of PLCγ1 loss on fast inhibitory transmission.
Because BDNF perfusion itself can enhance excitatory transmis-

sion and lead to LTP,30,32 we next tested whether PLCγ1 loss could
also affect BDNF-induced LTP. LTP was induced by application of
BDNF at the SC-CA1 pathway of WT mice, but not of Plcg1f/f;
CaMKII mice (Figure 3c). As the BDNF effect shares the same
mechanisms as TBS when facilitating LTP,30 we further examined
whether BDNF pretreatment occludes TBS-LTP. After treatment of
BDNF, TBS did not induce additional LTP in Plcg1f/f; CaMKII slices,
similar to observations in WT slices (Figure 3d). Moreover, a
selective TrkB agonist, 7, 8-dihydroxyflavone33 was unable to
restore TBS-LTP in Plcg1f/f; CaMKII slices (Figure 3e), which
suggests that the underlying deficit seems to occur downstream
from BDNF-TrkB. In addition, long-term depression induced by
low-frequency stimulation or by application of the mGluR agonist
3, 5-dihydroxyphenylglycine did not differ between WT and Plcg1-
deficient hippocampal slices (Figure 3f and Supplementary
Figure 8). These results indicate that PLCγ1 deficiency in
hippocampal CA1 pyramidal neurons impairs BDNF-TrkB-
dependent LTP, and, as a result, this deficit may underlie the
deficits in spatial learning and memory observed in Plcg1f/f; CaMKII
mice (Figure 1j).

Impairment of BDNF-mediated Ca2+ signaling and localization of
CaMKII to inhibitory synapses of PLCγ1-deficient neurons
As BDNF triggers increased [Ca2+]i in hippocampal neurons,34 we
examined the possible effects of PLCγ1 deletion on BDNF-induced
[Ca2+]i elevation. To faithfully delete PLCγ1 from cultured neurons,
we took advantage of Plcg1f/f; Nestin mice, which express Cre
recombinase at an early stage of development.35 BDNF-mediated
[Ca2+]i elevation was markedly attenuated in hippocampal
neurons isolated from Plcg1f/f; Nestin mice when compared with
that in WT neurons (Figure 4a). Transient receptor potential cation
channels (TRPCs) mediate BDNF-mediated [Ca2+]i elevation,

17 and
expression and activity of TRPC3 are regulated by PLCγ1.36

Inconsistent with this possibility, however, the expression levels of
both TRPC3 and 6 were indistinguishable between WT and Plcg1f/f;
CaMKIImice (Supplementary Figure 9). Furthermore, application of
a TRPC6 activator, hyperforin, increased [Ca2+]i to a similar extent
in hippocampal neurons prepared from WT and Plcg1f/f; Nestin
mice, which implicates PLCγ1 as one of the upstream regulators of
TRPCs (Supplementary Figure 10). Although it remains unclear
how Ca2+ elevation could be affected by the loss of PLCγ1,
disruption of Ca2+ signaling may account for impairments in TBS-
LTP- and hippocampus-dependent spatial memory.
TrkB defines a variety of synaptic features by activating various

signaling molecules, including PLCγ1, phosphoinositide 3-kinase,
extracellular signal-regulated kinase (ERK) and CaMKIIα.11 Thus, we
tested whether disrupting PLCγ1 affects the activity of those
BDNF-induced singling pathways. BDNF-induced phosphoactiva-
tion of ERK, CaMKII and cAMP-response element-binding protein
was significantly reduced in PLCγ1-deficient neurons, whereas
phosphorylation of thymoma viral proto-oncogene (AKT) and
mechanistic target of rapamycin remained unaltered (Figure 4b).
Localization of phosphorylated CaMKII to inhibitory synapses is a

prerequisite for appropriate development of GABAergic currents
because CaMKII-mediated phosphorylation of GABAAR subunits is
necessary for stable insertion into the postsynaptic membrane.37

Accordingly, we reasoned that a reduction in mIPSC frequency
and possible decreases in the number of functional inhibitory
synapses onto PLCγ1-deficient neurons would be attributable to
disruption of the postsynaptic localization of phosphorylated
CaMKIIα. To address this hypothesis, we monitored the distribu-
tion of Thr286-phosphorylated CaMKIIα (pCaMKIIα) at inhibitory
synaptic connections. Indeed, colocalization of pCaMKIIα with
gephyrin was reduced in both the somata and neurites of PLCγ1-
deficient neurons compared with WT neurons (Figures 4c, e and f).
Interestingly, BDNF treatment significantly increased the coloca-
lization of gephyrin and pCaMKIIα in WT neurons, but not in
PLCγ1-deficient neurons (Figures 4d–f). As GABAAR α1 is a
substrate of pCaMKIIα,37 it is possible that loss of PLCγ1 decreases
surface expression of the GABAAR α1 subunit on the somata of
hippocampal neurons because this subunit is preferentially
expressed over β2/3 at synapses innervated from PV-positive
inhibitory neurons.38 We compared the surface expression of
GABAAR α1 subunit between WT and Plcg1f/f; Nestin neurons in the
absence of membrane permeabilization. We detected a significant
decrease in GABAAR α1 staining in PLCγ1-deficient hippocampal
neurons (Figure 4g). To corroborate the function of PLCγ1 in the
synaptic localization of pCaMKIIα and the ensuing phosphoryla-
tion/translocation of GABAAR subunits, we also analyzed the
surface expression of the GABAAR δ subunit, a predominant
isoform of extrasynaptic GABAAR, which is not a substrate of
CaMKIIα.37,39 Supporting the selective effect of CaMKIIα, surface
expression of GABAAR δ was comparable between WT and PLCγ1-
deficient neurons (Figure 4h). Collectively, these findings indicate
that PLCγ1 is necessary for the formation and/or maintenance of
functional inhibitory synapses containing GABAAR α1 by modulat-
ing the postsynaptic localization of pCaMKII.

Reversal of hyperactive behavior of Plcg1f/f; CaMKII mice
To examine the predictive validity of Plcg1f/f; CaMKII mice as an
animal model of mania, we investigated the effects of the mood
stabilizers normally used to treat BD patients (lithium and valproic
acid (VPA) on Plcg1f/f; CaMKII mice. To examine possible reversal of
hyperactive behavior, mice were given lithium chloride (LiCl) in
the drinking water (300 mg l− 1) for 14 days. We found that
consumption of lithium decreased the locomotor activity of
Plcg1f/f; CaMKII mice in the open field test to a level comparable
with that of WT littermates (Figures 5a and b). Interestingly, the
levels of anxiety and depression in Plcg1f/f; CaMKII mice were also
normalized by lithium treatment (Figures 5c and d). Moreover,
acute injection of LiCl (100 mg kg− 1) reduced the open field
activity of Plcg1f/f; CaMKII mice to the level of vehicle-treated WT
mice, while having no significant effect in WT mice
(Supplementary Figures 11a and b). Thus, lithium restored the
abnormal behavior of Plcg1f/f; CaMKII mice to normal levels.
Similarly, VPA (200 mg kg− 1), reduced the locomotor activity of
Plcg1f/f; CaMKII mice to level observed in vehicle-treated WT
littermates without any effect on the locomotion of WT mice
(Figure 5e).
As a possible means of ameliorating the hyperactivity of Plcg1f/f;

CaMKII mice, we also attempted to use hyperforin, a TRPC6
channel activator that stimulates downstream effectors of the
PLCγ1 pathway (such as CaMKII and cAMP-response element-
binding protein).17,40 When mice were injected intraperitoneally
with hyperforin (1 mg kg− 1 body weight), the hyperlocomotor
activity of Plcg1f/f; CaMKII mice was significantly reduced, although
there was no effect on WT mice (Supplementary Figures 11c and
d). Given the evidence that activation of TRPC6 elevates [Ca2+]i in
Plcg1-deficient neurons as effectively as in WT neurons
(Supplementary Figure 10), restoration of Ca2+ signaling by TRPC6
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may contribute to restoration of locomotion in Plcg1f/f;
CaMKII mice.
BD is a chronic and long-term illness that is often misdiagnosed

as attention deficit hyperactivity disorder (ADHD).41 However,
ADHD symptoms tend to disappear with age42 and ADHD mouse
models also show reduced hyperactivity with age.43 Plcg1f/f;
CaMKII mice continue to display hyperlocomotor activity when
compared with age-matched WT mice, even at 8 months of age
(Supplementary Figure 12). We also examined the behavioral
response to amphetamine (Amp), a psychostimulant normally
used to treat ADHD, but induces manic episodes in BD patients.44

Amp administration increases locomotion in various manic-like
models such as GluR6-, Erk-, Clock-knockout, and Shank3-

overexpressing mice.45–48 Supporting a manic-like, rather than
an ADHD-like, behavioral phenotype, acute injection of Amp
aggravated the hyperactivity of Plcg1f/f; CaMKII mice (Figure 5f).
Therefore, Plcg1f/f; CaMKII does not appear to be directly related to
ADHD; however, these mice may be a potential model of manic
episodes associated with BD.

DISCUSSION
Aberrant synaptic functions and plasticity are believed to underlie
neuropsychiatric disorders such as schizophrenia, ADHD and
BD.49,50 Here we show that PLCγ1 deletion affects inhibitory inputs
and BDNF-dependent forms of synaptic plasticity (Supplementary
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Figure 13). Although PLCγ1 is an essential mediator of BDNF-TrkB
signaling for synaptic features of inhibitory transmission,51,52 our
finding that PLCγ1 has a role in the translocation of CaMKIIα to
inhibitory synapses provides a mechanistic basis for how BDNF-
TrkB signaling promotes the postsynaptic expression of functional
GABAA receptors.53 Emerging evidence indicates that the imbal-
ance between excitatory and inhibitory inputs (E/I) is a major
cause of various neuropsychiatric disorders54,55 and the GABAergic
dysfunction observed in the hippocampi of BD patients.56

Therefore, PLCγ1 deletion is highly likely to alter the E/I balance

in forebrain circuits such as the hippocampus and striatum,
leading to behavioral abnormalities. Lithium or VPA increases
inhibitory input into hippocampal neurons.57,58 Thus, it is reason-
able that lithium or VPA enhances basal inhibitory activity in
Plcg1f/f; CaMKIImice and thereby normalizes the E/I balance, which
can ameliorate the hyperactive behavior.
Interestingly, we observed that loss of PLCγ1 affects BDNF-

mediated ERK, CaMKII, CaMKIV and cAMP-response element-
binding protein activation, but not the phosphoinositide 3-kinase/
AKT signaling pathway (Figure 4b). It is highly likely that deleting
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PLCγ1 disrupts BDNF-mediated TRPC channel activation, which in
turn interferes with the activation of ERK. Our data are consistent
with those of a previous study showing that activation of ERK,
CaMKIV and cAMP-response element-binding protein is mediated
by Ca2+ influx via PLCγ1-triggered TRPC3/6 channels and IP3
generation in cerebellar granule neurons.17 Moreover, we cannot
exclude the possibility that receptor tyrosine kinase-mediated
cascades11,59 other than the BDNF-TrkB pathway control synaptic
functions and lead to behavioral changes in Plcg1f/f; CaMKII mice.
Indeed, neurotrophins stimulate mitogen-activated protein kinase,
phosphoinositide 3-kinase and PLCγ1 through respective Trk
receptors, and neuregulins (NRG1–6) can activate diverse signal-
ing pathways, including the phosphoinositide 3-kinase, mitogen-
activated protein kinase and PLCγ1 pathways.59 Interestingly,
NRG1 and NRG3 SNPs are also associated with BD.60,61 Given the
conceivable alterations of TrkB- or other receptor tyrosine kinases-
mediated signaling pathways in Plcg1f/f; CaMKII mice, the under-
lying molecular mechanisms and functional consequences merit
subsequent investigation.
TrkbPLC/PLC-knock-in mice lacking PLCγ1 docking sites substan-

tiated the requirement of PLCγ1 activity for normal synaptic
plasticity and associative memory.20,21 However, in contrast to
Plcg1f/f; CaMKII mice, TrkbPLC/PLC-knock-in mice showed normal
locomotor activity and anxiety-like behavior. Although it should
be clearly clarified how the two types of mice display disparate
behavioral phenotypes, it may simply be due to their different
genetic backgrounds or perhaps distinct signaling pathways in
which either TrkbPLC/PLC-knock-in or Plcg1f/f; CaMKII mice are
defective. For example, it is possible that PLCγ1 could be activated
through its catalytic domains and by multidomains responsible for
protein–protein and protein–lipid interactions62 in TrkbPLC/PLC-
knock-in mice, but not directly by TrkB. The residual activity of
PLCγ1 would possibly support the normal locomotion and anxiety
observed in TrkbPLC/PLC-knock-in mice.
Here we provide substantial evidence that the BDNF-mediated

PLCγ1 signaling is required for the formation and function of
inhibitory synapses, and that dysfunction of PLCγ1 in the forebrain
contributes to hyperactive behavior. As Plcg1f/f; CaMKII mice
exhibited a constellation of manic-like behaviors, but neither
sensory-gating deficits nor depression-like behavior, we argue that
mice deficient in PLCγ1 would be a reliable model for the manic
phase of BD. Considering the necessity and importance of genetic
animal models for neuropsychiatric diseases, Plcg1f/f; CaMKII mice
may be a reliable and representative model of manic episodes of
BD and may have potential use in future drug development
studies.
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