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Central Nervous System and
its Disease Models on a Chip
YoonYoung Yi,1,2 JiSoo Park,3 Jaeho Lim,2 C. Justin Lee,3,4

and Sang-Hoon Lee2,3,*

Technologies for microfluidics and biological microelectromechanical systems
have been rapidly progressing over the past decade, enabling the development
of unique microplatforms for in vitro human central nervous system (CNS)
and related disease models. Most fundamental techniques include manipula-
tion [1_TD$DIFF]of axons, synapses [2_TD$DIFF], and neuronal networks, and different culture conditions
are possible, such as compartmental, co-culturing, and [3_TD$DIFF]3D [4_TD$DIFF]. Various CNS
disease models [5_TD$DIFF], such as Alzheimer's disease [6_TD$DIFF] (AD), Parkinson's disease [7_TD$DIFF] (PD),
multiple sclerosis [8_TD$DIFF] (MS), epilepsy, N-methyl-D-aspartate receptor [9_TD$DIFF](NMDAR)
encephalitis, migraine, diffuse axonal injury, and neuronal migration disorders,
have been successfully established on microplatforms. [10_TD$DIFF]In this review [11_TD$DIFF], we sum-
marize[12_TD$DIFF] fundamental technologies and current existing CNS disease models on
microplatforms. [13_TD$DIFF]We also discuss [14_TD$DIFF] possible future directions, including applica-
tion of these methods to pathological studies, drug screening [15_TD$DIFF], and personalized
medicine, with 3D and personalized disease models that could generate more
realistic CNS disease models.

In Vitro Models of the CNS
The [27_TD$DIFF]CNS[28_TD$DIFF] is highly compartmentalized and layered, containing diverse cell types with plastic
connectivity via axon and dendrite outgrowths [1]. Animal-based CNS disease models have
been used to study human brain function and related diseases. However, these in vivo
approaches have various limitations, such as high costs, low-throughput, labor-intensive,
and time-consuming processes [29_TD$DIFF], and experimental variations. These limitations led neuroscient-
ists to develop simplified and high-throughput in vitro CNS disease models. However, the
simplicity of in vitro tissue models can also lead to biased results and false [30_TD$DIFF]conclusions.
However, these can be reduced by particular technologies [31_TD$DIFF] that mimic the [32_TD$DIFF]3D[33_TD$DIFF] structure,
abundant vasculature, blood–brain barrier (BBB) [35_TD$DIFF], and cerebrospinal fluid (CSF) of [36_TD$DIFF]the brain [37_TD$DIFF] [38_TD$DIFF]
[2]. Organs-on-chips are microengineered platforms that mimic physiological microenviron-
ments and cultured tissues. Until now, the modeled organs-on-chips included the heart, lung,
kidney, blood vessels, skin, liver, brain, and pancreas [3,4]. Understanding the mechanisms of
CNS functions and causes of diseases also requires systematic platforms capable of mimicking
the in vivo neuronal environment. Recent progress in microfluidics and microelectromechanical
systems (MEMS) has made it possible to develop unique platforms for creating in vitro human
CNS models that approximate the in vivo conditions as far as possible [2]. These technologies
have established various in vitro CNS disease models of [39_TD$DIFF]AD [40_TD$DIFF], [41_TD$DIFF]PD [42_TD$DIFF], [43_TD$DIFF]MS [44_TD$DIFF], migraine, diffuse axonal
injury (DAI), neuronal migration disorders, epilepsy, and [45_TD$DIFF][46_TD$DIFF]NMDAR encephalitis. As [47_TD$DIFF]shown in
Figure 1, the complex in vivo environment of the CNS can be established in vitro with 2D and
3D neuronal cell cultures on diverse microfluidic platforms, allowing the modeling of critical CNS
diseases. The microenvironments and morphology of cells can be controlled by fluidic and
patterning technologies. In this review, we identify current fundamental microtechniques that
are applicable to the in vitromodeling of theCNSandhighlight challenges formicroplatform-based
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Figure 1. General Conceptions of Central Nervous System (CNS) Disease Models on the Microplatform.
CNS disease models in elucidating underlying mechanisms. Finally, we briefly describe the
potential technologies applicable to the CNS and CNS disease models and discuss future
perspectives.

Fundamental Techniques Dealing with CNS on Microplatforms
In vitro studies of brain pathophysiology [48_TD$DIFF]have been performed using controlled cultures of
neurons, glial cells, and brain tissues on microplatforms [49_TD$DIFF]designed to mimic the in vivo envi-
ronment of the CNS as closely as possible. These have several advantages, including flexible
control of the microenvironment, single-cell handling, real-time analysis, co-culture, compart-
mentalized culture, perfusion culture, and long-term culture [5]. Such study models can be
categorized as axons, co-cultures of neuronal cells, neuronal networks with directionality, brain
slices, and reading neuronal activities via microelectrode arrays (MEAs). Table 1 summarizes the
currently applicable techniques for CNS models on [50_TD$DIFF]microplatforms.

Control of CNS Cells on Microplatforms
Microfluidic platforms have been developed with suitable spatial control of neurons by physical
channels that restrict the movement of cell bodies and generation of chemical gradients. The
CNS [51_TD$DIFF]comprises neurons, astrocytes, and microglia, and these cells support one another (e.g.,
glial cells support neuronal survival) and [52_TD$DIFF]communicate with the extracellular matrix (ECM). To
mimic the in vivo situation of CNS and its diseases, [53_TD$DIFF]the control of physical and chemical cues and
[54_TD$DIFF]the proper ratio of these different cell types [55_TD$DIFF]are important. Using cellular responses to surface
topology and chemical modification, one can control desired neuronal constructions by the
in vivo mimicking of ECM. For the control of surface topology, diverse patterning techniques [56_TD$DIFF],
includingmicrocontact printing, [57_TD$DIFF]soft- and [58_TD$DIFF]photolithography, laser ablation[59_TD$DIFF], and so forth[60_TD$DIFF], could be
[61_TD$DIFF]used [6]. [62_TD$DIFF]Surface-modification methods that use polylysine, laminin, polyethylene glycol, and
albumin have been extensively used for the control of cell adhesion and growth [6]. Controlling
the cell ratio is critical to mimic the in vivo environment of diverse CNS diseases; however, the
2 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Table 1. Summary of Applicable Techniques for CNS Models on Microplatforms

Cues Target Peculiarity Refs

Mimic neuronal
networks

Axon Mitochondrial transport [13]

Co-culture Neuron/glia or oligodendrocytes [21–23]

Hippocampal CA1/entorhinal cortex [24]

Synapse Synaptic competition [17]

Neuronal circuit Corticostriatal networks [26]

Corticothalamic networks coupled to MEAs [36]

Brain slice Focal control of chemicals [29]

Functional connections by extending axons through
microchannel

[24]

Cortex layer
mimic

Hydrogel [43]

Nerve growth factor (NGF)/B27 gradient [44]

3D Concave microwells with osmotic micropump [48]

Size-controllable networked neurospheres [47]

Mimic CNS
environments

BBB Trapping of endothelial cells and co-culture with
astrocyte-conditioned media

[56]

Fluidic shear stress and thin culture membrane [55]

Immortalized human brain endothelial cells and fluid shear
stress

[54]

Synthetic microvasculature model of BBB with
astrocyte-conditioned media

[57]

Neurovascular unit Microporous polycarbonate membrane as vascular channel [58]

Facilitating
inspection
and manipulation

Visualization of
axons and
synapses

Isolated axons without soma or dendrites [11]

Multicompartment culture [10]

Axonal quantitative analysis [12]

Local perfusion chamber for visualizing and manipulating
synapses

[15]

Quantum dot-labeled brain-derived neurotrophic factor [14]

MEA mMEA Neural–electrical and neural–chemical interfaces [59]

3D Layer-by-layer electrode array design to observe 3D
neuronal cultures

[60]

Combined
with fluidics

3D microscaffold system [61]

Corticothalamic co-cultures in a dual compartment [38]

Dual-compartment neurofluidic system with interconnection
microchannels

[37]
ratio of each cell type in the CNS is unclear. Generally, neurons and astroglia usually grow to
equal densities, mimicking natural conditions, after [63_TD$DIFF]1 week in conventional co-culture [7].
However, in the microfluidic co-culture channel, the neuron [64_TD$DIFF]:glia ratio [65_TD$DIFF]can be controlled [66_TD$DIFF]to mimic
diverse in vivo (normal or abnormal status) [67_TD$DIFF]ratios and may provide diverse disease models.

Visualized and Quantifiable Axons
The axons of neuronal cells are [68_TD$DIFF]important for the pathogenesis of neurodegenerative diseases
and CNS injuries. Although studies using animal models have provided considerable insights,
these models involve multiple parameters and do not allow the real-time monitoring of axon
damage or regeneration [8]. Compartmentalized Campenot chambers have been developed for
studying axonal behavior in vitro, but analyzing the length of randomly [69_TD$DIFF] grown axons in these
Trends in Biotechnology, Month Year, Vol. xx, No. yy 3



TIBTEC 1300 No. of Pages 15

(A) Quan�fiable axons

Axon
compartments

Axon
compartment

Soma
compartment

Soma
compartment

Soma
compartment

Soma Axons

400 µm

15 µm

3 µm 1-3 µm

20°

Glia

Axon/glia
compartments

C

Ridge
structure

Ridge
structure

Perfusion outlet

Computer

CCD camera

Brain slice

Excita�on
light

Slice anchor

PDMS
membranes

PDMS
frame

Emission light

Applica�on
Suc�on

Perfusion
Inlet

Axons

Neuronal soma

Axon-guiding
microgrooves

Axon-guiding
microgrooves

Sealed
microgrooves

Guided/isolated
axons

Brain slice MEA

Co-culture Direc�onality(B) (C)

(D) (E)

Figure 2. Fundamental Techniques Dealing with [170_TD$DIFF]the Central Nervous System (CNS) on Microplatforms. (A)
Visualized and quantifiable axons [171_TD$DIFF][12]. (B) Co-culturing inside microfluidics [172_TD$DIFF][23]. (C) Directionality of neuronal networks [173_TD$DIFF][26].
(D) Brain slices on a microfluidic platform [174_TD$DIFF][29]. (E) Neuronal activities on microelectrode arrays [175_TD$DIFF](MEA) [34].
devices is still a challenge [9]. Microfabrication, microfluidic, and surface-micropatterning tech-
niques were combined to produce a [70_TD$DIFF]multicompartment neuronal culturing device [10] that
facilitated [71_TD$DIFF]the identification, visualization [72_TD$DIFF], and quantification of neurons [11,12], especially [73_TD$DIFF]axons
[13,14] and synapses [74_TD$DIFF][15], in an in vitro environment. Taylor et al. developed amicrofluidic device
for the compartmental culture of primary CNS neurons that allowed axonal growth and isolation
and monitoring of axonal mitochondria [11]. This device [75_TD$DIFF]is recognized as one of the most useful
matrices for neurodegenerative disease research (Figure 2A) [5,8,16–19].

Co-culturing Inside Microfluidics
[76_TD$DIFF]Co-culture of different CNS cell types in a microfluidic system enables the connection of different
chambers and controlled perfusion with one or more fluids. Typical platforms for co-culturing
include separated cell culture in two spaces with connections [15,20,21] and combined cell
culture in one space [22,23]. They permit an in vitro approximation of an in vivo extracellular
microenvironment and allow us to monitor communication between neuronal cells (Figure 2B).
Co-cultures of slices from cortex and hippocampus formed functional connections by extending
axons through the microchannels [24], with a controllable microfabricated valve serving as a
barrier between the chambers [21]. Perfusion of media from the glia to the neuronal chamber
confirmed that glia provided the necessary nutrients for neuronal survival. Synaptic competition
and neuronal networks could also be readily investigated [16,17,25]. Furthermore, combined
cell culture in one space has usually been used to mimic CNS myelination. The compartmen-
talized co-culture microplatform enables oligodendrocytes to be placed in the axon [77_TD$DIFF] and/[78_TD$DIFF]or glia
compartment, [79_TD$DIFF]and to interact with axons only and not with neuronal somata [22]. Following this,
a microsystem mimicking CNS myelination using oligodendrocyte progenitor cells in co-culture
with isolated axons was reported [23].

Directionality of Neuronal Networks
All neurons and neuronal networks have directionality that optimizes the speed of processing
information in the CNS, and that directionality is critically involved in the degeneration of neuronal
networks in the brain. The aforementioned culture models exhibit random neuronal connections,
which do not reflect the circuit-to-circuit communication of actual neuronal networks and [80_TD$DIFF],
therefore [81_TD$DIFF], do not truly model the CNS. Notably, fully mature, functional [82_TD$DIFF], and properly [83_TD$DIFF]oriented
corticostriatal networks have been reproduced in asymmetric, funnel-shaped [84_TD$DIFF]microchannels
4 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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(Figure 2C) [26]. This development represents an important step towards reducing the dis-
crepancies between in vivo and in vitro studies. Although well-defined directional networking of
neurons is still challenging, we expect that the rapid progress in microtechnologies will soon
enable us to mimic CNS neural circuits as closely as possible.

Brain Slices on Microfluidics
Brain slices are good preparations for obtaining preformed-organized information about the
CNS. Microfluidics can provide spatiotemporal control over specific brain slice regions with
improved oxygen penetration into the slice [27]. Spatiotemporal information for network signal-
ing can be interpreted by focally [85_TD$DIFF] perfused chemical stimuli (Figure 2D) [27–29]. Local injection of
flow into one portion of a slice [30] and monitoring responses via probes with two [31], four [32],
or six [33] hydrodynamically [86_TD$DIFF] controllable apertures have been demonstrated.

Neuronal Activities on [87_TD$DIFF]Microelectrode Arrays
MEAs have been used to explore the electrical activity of neuronal cell networks by making
extracellular recordings in real time. MEAs are ideal for investigating long-term neuronal net-
works and [88_TD$DIFF]do not limit the number of cells from which recordings can be obtained (Figure 2E)
[34,35]. MEAs are sometimes bonded to a dual-compartment system to allow long-term co-
culture of neuronal cells and recording of spontaneous activity from neuronal networks [36–38].
MEAs have been used to demonstrate the propagation of electrical activities between cortical
and thalamic regions [36]. Even though there have been [89_TD$DIFF]several efforts to develop microfluidic
devices for brain slices on a MEA, the long-term culture of brain slices is still challenging due to
difficulty with decreased viability and expansiveness [27].

In Vivo-Mimicking CNS Models on a Microplatform
Recent progress in microtechnologies has allowed for the construction of a more complicated
CNS model that was unattainable with a conventional cell culture system. Here, four micro-
platform-based models that characterize parts of the CNS are introduced: cortex layer mimics,
3D cultures of neuronal cells, BBB [90_TD$DIFF], and stereoscopic MEAs.

Mimicking the Brain Cortex
Construction of a 3D cortex containing all six cortical layers is important for the study of
neurodegenerative diseases in vitro. For several different cell types, the behavior of cells cultured
in a 3D environment is more representative of in vivo conditions [91_TD$DIFF]compared with cells cultured in a
monolayer [39]. [92_TD$DIFF]Given that they more accurately reflect in vivo interactions, 3D neural constructs
may serve as useful platforms for investigating CNS disease mechanisms [40]. Hydrogel-based
microfluidic devices can generate steady, long-term chemical concentration gradients [41,42].
Brain cortex layers can be mimicked (Figure 3A) using neuron-hydrogel layers alternated with
neuron-free hydrogel layers [43] and different synaptic densities in the cerebral cortex with linear
chemical gradients of [93_TD$DIFF] nerve growth factor [94_TD$DIFF](NGF [95_TD$DIFF])/B27 [44].

Neurospheroids without Hydrogels
A recently developed 3D CNS model that does not use hydrogels has attracted considerable
attention because it better mimics the in vivo environment (Figure 3B). Although hydrogels have
been used as scaffolds for 3D cell cultures in many applications, they have some limitations,
such as limited nutrient transport and reduced cell viability [45]. Gel-free neurospheroids [46,47],
constructed by harvesting cells from all six cortical layers of a rat and seeding them in arrayed
concave microwells, were used to analyze the effects of oligomeric amyloid beta (Ab) on
networked neurospheres. These neurospheres were exposed to perfused culture media deliv-
ered at a very low flow rate [96_TD$DIFF], comparable to that of interstitial flow in the brain [97_TD$DIFF], by an [98_TD$DIFF]osmotic
micropump [48]. This system was used to analyze the effect of perfused oligomeric Ab on
networked neurospheres. Jeong [99_TD$DIFF]et al. also developed a concave-well, hemicylindrical-channel-
Trends in Biotechnology, Month Year, Vol. xx, No. yy 5
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Figure 3. In Vivo-Mimicking of [176_TD$DIFF]Central Nervous System (CNS) Models on a Microplatform. (A) Mimicking the
brain cortex [177_TD$DIFF][43]. (B) Neurospheroids without using hydrogels [178_TD$DIFF][47]. (C) Mimicking the blood brain barrier [179_TD$DIFF][55]. (D)
Stereoscopic microelectrode arrays [180_TD$DIFF](MEA) [61].
network applicable to CNS regeneration [49,50]. Takeuchi et al. showed that neurospheroids
have potential clinical applications, such as neural transplantation therapy. They created a pre-
made in vivo neural network in a polydimethylsiloxane (PDMS) microchamber array and trans-
planted it onto host cortical tissue [51].

Mimicking the Blood–Brain Barrier
The physicochemical properties of the BBB are essential for maintaining a CNS microenviron-
ment that supports reliable neuronal activity [52]. Disruption of the BBB has been implicated in
multiple neurodegenerative diseases [53]. The smallest BBB model using immortalized human
brain endothelial cells had the barrier dysfunction typical of neurodegenerative disease when
exposed to fluid shear stress and tumor necrosis factor (TNF)-/ [54]. A dynamic, thin-membrane
in vitro BBB model that includes [100_TD$DIFF]multilayered polymers has been developed [55]. A porous
polycarbonate membrane is laid down between two PDMS layers that contain channels and
culture chambers to separate the two compartments and allow dynamic culture (Figure 3C).
Another BBBmodel contains a [101_TD$DIFF]microhole structure for trapping human umbilical vein endothelial
cells with astrocyte-conditioned medium [56]. A synthetic microvasculature model of the BBB
(SyM-BBB) provides the ability to simultaneously visualize both the vascular and neuronal
compartments in real [102_TD$DIFF] time [57]. This model was further improved by adding neurons [58].
The improved microplatform [103_TD$DIFF]comprised a vertically stacked neural parenchymal chamber
separated by a vascular channel via a microporous polycarbonate membrane. These models
are not [104_TD$DIFF]yet widely applied to CNS disease models[105_TD$DIFF], but they could be used specifically for
assaying the toxicity and metabolism of CNS drugs and comparing the in vitro and in vivo
outcomes of traumatic injuries to the neurovascular unit.
6 Trends in Biotechnology, Month Year, Vol. xx, No. yy



TIBTEC 1300 No. of Pages 15
Stereoscopic Microelectrode Arrays
RefinedMEAs that more closely mimic in vivoCNSmodels have recently been developed. These
include multifunctional MEA (mMEA) and 3D MEA. A mMEA with added dopamine-sensing
functionality permits both neural-electrical and neural-chemical recordings in a single chip [59].
Two different 3D MEAs were developed for recording electrical activity from more in vivo-like
brain models. One [106_TD$DIFF]comprised three repeated PDMS fluidic layers and two microelectrodes, and
the other had hollow SU-8 microtowers encased in a PDMS fluid manifold. Both offer multiple
electrode contacts and perfusion ports for long-term neuronal cell maintenance. In 3D MEAs,
acquisition of true 3D connectivity information is possible (Figure 3D) [60,61].

Neurodegenerative Disease Models
Dysfunction or destruction of neurons and glial cells is the basic underlying concept in CNS
diseases. CNS models that represent neurodegenerative diseases usually require long-term
culture duration and controllable fluid delivery. Accumulation of abnormal protein aggregates is
an important feature of neurodegenerative diseases, as are the mutual influences of healthy and
diseased neurons. Heretofore, [107_TD$DIFF]microplatforms have included compartmented microchannel
[12,18,19,62–64], co-culture systems [16,25,65], chemotaxis and gradient-forming systems
[66–69], and systems for real-time monitoring of neural activity [68].

Alzheimer's Disease Models
Extensions of Ab and tau proteins might contribute to synaptic dysfunction in AD [70]. The
aspects of AD modeled in microplatforms include propagation of Ab or tau protein through
neuronal networks and axonal transfer [16,19,62,71,72], Ab and tau protein toxicity
[18,25,67,68], glial cell function [20,65], and the influence of synapses [64].

Ab accumulation in the CNS may be caused by an imbalance between Ab production and
clearance. Several recent studies investigated the transmission of Ab using advanced micro-
fluidic devices, demonstrating Ab spreading through neuronal connections (Figure 4A) [62], the
effects of Ab stress on neuronal networks [16], and the chemotaxis of microglia in response to
various conditions of Ab [66]. Deleglise et al. reconstructed a directionally oriented [108_TD$DIFF]cortico-
hippocampal network and showed that [109_TD$DIFF]somatodendritic deposits of Ab on cortical neurons
trigger a rapid cortical presynaptic disconnection before any axonal or somatic cortical degen-
eration [16]. This represents the early pathway in AD. Ab assemblies consequently cause
synaptic dysfunction by disrupting both neurotransmitter and neurotrophin signaling. Neurons
from AD transgenic mice show reduced retrograde axonal transport of BDNF, which is essential
for synaptic function, plasticity, and neuronal survival [18].

Neuron-to-cell spread of wild-type tau was visualized in a microfluidic device containing micro-
channel chambers [72]. Hyperphosphorylated tau protein may result from an imbalance of tau
kinase and phosphatase activities in the affected neurons [73]. Natalia et al. reported that the
hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles repre-
sent additional neuropathological hallmarks of the AD brain [74]. Using okadaic acid, Kunze et al.
controlled the generation of two different phosphorylation states between connected neuronal
cell compartments in a microfluidic device [66]. Of the six types of tau protein [110_TD$DIFF], 3-repeat and
4-repeat tau proteins are considered the main pathological entities. Utilizing a compartmented
microfluidic device containing a microchannel, Stoothoff et al. found that 3-repeat and 4-repeat
tau proteins caused different alterations in retrograde and anterograde transport [111_TD$DIFF], with the
3-repeat having a slightly stronger effect on axon transport dynamics [19].

Excessive GABA release from reactive astrocytes is also involved in AD memory decline [75].
Bianco et al. compared glial functions in the cortex and hippocampus after exposure to amyloid
b fibrils through overflow microfluidic networks [20]. Hippocampal, but not cortical, [112_TD$DIFF]astrocytes
Trends in Biotechnology, Month Year, Vol. xx, No. yy 7
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Figure 4. Neurodegenerative Disease Models on Microplatforms. (A) Alzheimer's disease model [181_TD$DIFF][48]. (B) Parkin-
son's disease model [182_TD$DIFF][13]. (C) Multiple sclerosis model [78].
have a detrimental role on neurons and this can provide one of the proofs of the mechanism of
memory decline in AD.

Parkinson's Disease Model
/-Synuclein is the major component of Lewy bodies, the filamentous inclusions characteristic of
PD. Severe loss of nigrostriatal dopaminergic fibers is the most consistent and specific lesion in
PD [76]. Studies of mitochondrial transport along single axons are difficult with traditional
dissociated culture systems. A new microplatform created by Xi Lu et al. now makes it possible
to monitor the transport of mitochondria along single dopaminergic axons (Figure 4B) [13].

Multiple Sclerosis Model
In neurodegenerative disease, it is [113_TD$DIFF]important to understand [114_TD$DIFF]the repair processes as well as [115_TD$DIFF]the
destructive processes. MS is [116_TD$DIFF]an [117_TD$DIFF]apt disease for the investigation of repair processes. Microglial
cells [118_TD$DIFF]have a major role in pathogen defense phagocytosis [119_TD$DIFF] and inflammatory responses [77]. A
microfluidic axon–microglia co-culture platform, created by Hosmane et al., demonstrated [121_TD$DIFF]a
Toll/interleukin-1 receptor domain-containing adapter inducing interferon-b (TRIF [122_TD$DIFF])[123_TD$DIFF][124_TD$DIFF]-dependent
microglial clearance of unmyelinated axon debris (Figure 4C) [78]. Until now[125_TD$DIFF], MS treatment has
focused only on relapsing-remitting states with limited efficiency. [126_TD$DIFF]Microplatforms could support
the development of real solutions by identifying real-time disease [127_TD$DIFF]microenvironmental progress.

Migraine
Cortical spreading depression (CSD), thought to be the important mechanism of migraine aura,
is a wave of depolarization followed by suppression, usually in the visual cortex. Spatiotemporal
information about such phenomena can be better interpreted [128_TD$DIFF] when chemical stimuli are focally
applied and the information passes to the surrounding neurons only via network signaling. Tang
et al. developed CSD models with a microfluidic device that provided precise focal control of
chemical stimuli in brain slices [28,29]. A laminar flow of oxygenated artificial CSFwasmaintained
throughout the dense post array. These experiments demonstrated that CSD was inducible
under a range of conditions [129_TD$DIFF], including those likely to be encountered in brain injury and during
certain awake states [130_TD$DIFF], such asmigraine. This finding could be used efficiently in diseasemodeling
and drug screening of partial epilepsy as well as migraine.
8 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Diffuse Axonal Injury
[131_TD$DIFF]DAI [132_TD$DIFF] is characterized by swollen and disconnected axons with multiple spheroids appearing on
individual axons [8]. DAI-induced mechanoporation of the plasma membrane can trigger axon
blebbing and focal microtubule disruption [79]. Reduction of cell inflammation immediately after
DAI may be necessary to improve regeneration and cognitive recovery. The development of
appropriate treatments requires accurate models that can simulate an applied injury. Multiple
such models were developed on microfluidic platforms, with CNS injury being reproduced by
mechanical methods such as stretch [80,81], compression [82], shear force [83], and laser [84].

An axonal stretch-injury model recapitulated immediate microtubule breakage in axons and
progressive microtubule loss [80]. A uniaxial strain injury model offers the advantage of making
functional connections between two slices and allows real-time and long-term observation of
injury responses [81]. A valve-based microfluidic axonal injury [133_TD$DIFF]microcompression platform also
permits observation of axonal deformation [134_TD$DIFF]before, during, and immediately after focal mechani-
cal injury [82]. All of these models enable observation of neuronal responses to injuries of varying
degrees. One recent study monitored intracellular Ca2+ levels in cultured astrocytes after
application of shear forces [83]. The mechanically induced Ca2+ influx commonly associated
with neuron models of traumatic brain injury also occurred in astrocytes. Another study
attempted to integrate the use of pulsed laser microbeams and microfluidic cultures [84].
The authors showed that laser microbeam dissection within a microfluidic platform produced
more precise zones of neuronal injury than was possible with other methods.

Regenerative Experiments in DAI Models
Unlike the peripheral nervous system (PNS), the CNS microenvironment inhibits neuronal
regeneration. Although the CNS has microglia, these cells do not aid in debris clearance to
the same extent as Schwann cells in the PNS [85]. In the CNS, [135_TD$DIFF]upregulation and accumulation of
compounds such as [136_TD$DIFF]chondroitin sulfate proteoglycans (CSPGs[137_TD$DIFF]) [86] and myelin-associated
inhibitors [138_TD$DIFF][myelin-associated glycoprotein (MAG[139_TD$DIFF]), Nogo, [140_TD$DIFF]and oligodendrocyte-myelin glycopro-
tein (OMgp) [141_TD$DIFF]] [87] are the major contributors to debris clearance. Recent studies revealed that
targeting a particular group of extracellular inhibitory factors is not sufficient to trigger long-
distance axon regeneration. Instead of antagonizing a growing list of such factors, tackling a
common target that mediates axon growth inhibition offers a more attractive strategy for
promoting axon regeneration. In this vein, Hur et al. examined the effect of pharmacological
inhibition of nonmuscle myosin II (NMII) in a two-compartment microchannel chamber. NMII
inhibition leads to the reorganization of both actin and microtubules in the growth cone, allowing
rapid axon extension over inhibitory substrates [88].

Neurogenesis Model
Mechanical compression injury can also be adapted to a neuronal migration model. Using a
neurosphere culture in a stretchablemicrofluidic device, Esfandiari et al. showed that mechanical
compression of neural stem cells could be a factor in accelerating the formation of radial [142_TD$DIFF]glia [89].
Given that this microsystem has a clear advantage with respect to applying well-controlled and
small mechanical forces, such as compressive, stretching, and shear forces, extensive studies of
CNS disease models relevant to mechanical forces could be possible in the future.

Epilepsy
Epilepsy is a disorder characterized by excessive synchronized neural activity. Generally, MEAs
are more useful for recording large numbers of points [143_TD$DIFF]compared with conventional extracellular
electrode recording techniques, and brain slices are often used as in vitro epilepsy models
because of the complexity of the underlying propagation properties [90]. Hill et al. made a status
epilepticus model of hippocampal slices on MEAs and validated the burst activities by using
anticonvulsants [71]. To clearly determine seizure onset in frontal lobe epilepsy, Chang et al.
Trends in Biotechnology, Month Year, Vol. xx, No. yy 9
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studied spatiotemporal changes in epileptiform activity recorded by a MEA in a thalamic-anterior
cingulate cortex (ACC) slice. They [144_TD$DIFF]found that thalamic inputs modulated the duration of ACC
seizure activities and the depth of seizure onset locations in brain cortex layers [91]. Recently, an in
vitroautosomal-dominant nocturnal frontal lobeepilepsymodel, usingMEAandcells cultured from
transgenic mice expressing b2-V287L, helped to determine the role of b2-V287L in synaptic
formation [92].

N-Methyl-D-Aspartate Receptor Encephalitis
MEA also provided the basic technology for detecting neuronal activity in the primary rat cortex
after exposure [145_TD$DIFF]in vitro to [146_TD$DIFF]CSF from a patient with NMDAR encephalitis [147_TD$DIFF][93]. This could represent
a new technique for evaluating the functional consequences of autoimmune encephalitis-related
changes in CSF.

Future Directions and Further Applications
To date, most microplatform-based CNS disease model applications have mainly sought to
clarify known or suspected mechanisms or verify isolated observations. Moreover, no single
device can yet fully recreate the in vivo CNS environment. The ultimate goal of microplatform-
based CNS disease models is to elucidate specific mechanisms that previously existed only as
assumptions and to identify treatment strategies that have not yet been imagined. Thus, it
matters [148_TD$DIFF]that these systems are able to closely mimic the human CNS. In the future, advances in
3D structural [149_TD$DIFF]microplatforms and personalized CNS disease models will hopefully make it
possible to accomplish these goals, with the aid of newer microplatform designs and improved
foundation technologies, and in combination with other technologies. [150_TD$DIFF]

3D Structural Modifications in CNS Disease Models
[151_TD$DIFF]3Dmodels are more likely to reproducean in vivo-likeenvironment, recapitulating thecomplexity of
directional growth and neuronal connections. Furthermore, sinceCNS diseases often differentially
affect different areas of the brain, models that more closely mimic the compartmentalization of the
human brain are needed. A diverse variety of 3D culture substrate materials can be incorporated
into microfluidic chips. As previously mentioned, 3D micropatterned hydrogels [44] and 3D
networks without hydrogels [48,51] have been successfully investigated. However, since the
brain is highly vascularized, reconstructing a genuine brain-like structure is not possible with
previous neuronal networks or by mimicking the BBB. A possible solution to this limitation is 3D
bioprinting,which is the process of creating 3D functional tissues thatmimic organsby using viable
cells and supportive hydrogels through several bioprinters[152_TD$DIFF], such as inkjet, microextrusion[153_TD$DIFF], and [154_TD$DIFF]

laser-assisted bioprinters [94]. Although current studies generally focused onmaking tissues such
as skin, blood vessels, trachea, kidney, and peripheral nerves, only one study adapted it to build
neurons and astrocytes in a 3Dmultilayered collagen gel [95]. However, this study did[155_TD$DIFF] [156_TD$DIFF]not include
vasculatures, so further studies attempted to create vascular structures of human umbilical vein
endothelial cellswith rat fibroblasts [96] or humanembryonic renal cells [97]. Proper applications of
this promising technology to CNS disease models will undoubtedly bring innovative changes.

Inducible Pluripotent Stem Cells on Microplatforms
CNS disease models on microplatforms will soon include stem cell or inducible pluripotent stem
cell (iPSC) cultures. A few studies have used human-derived components [157_TD$DIFF], such as neural stem
cells (NSCs), embryonic stem cells (ESCs) [98–100], and iPSCs [158_TD$DIFF]. However, of these, iPSCs are
the most promising source because of their unique characteristics, such their individualization to
each patient and exemption from the ethical problems associated with other embryonic cell
sources. The genetic background of the iPSC donor in the disease model can be used in in vitro
clinical trials. This will overcome the limitations of modeling genetic neurological deficiencies
in vitro. Individual patient-derived neuronal networks that mimic specific functional units in the
brain could be measured by MEA, assisting in diagnosis and treatment decisions.
10 Trends in Biotechnology, Month Year, Vol. xx, No. yy
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Outstanding Questions
Can the [3_TD$DIFF]central nervous system ([4_TD$DIFF]CNS)
be built on a chip?

What is the role of stem cells in devel-
oping a ‘CNS’ model on a chip?

Can the six layers of cortex and their
functions be realized on a chip?
Further Applications
The proposedCNS diseasemodel could be used for the discovery of diseasemechanisms, drug
screening [159_TD$DIFF], and personalized medicine, and we ultimately expect that this model will replace
animal models. Well-organized CNS disease models on microplatforms might be the answer to
overcoming the ethical issues surrounding animal experiments. Although the proposed model is
simple, compared with an intact animal model, it can better provide a regulated environment
than an animal model can, permitting a clearer analysis of the role of specific molecules in
causing disease and as possible targets of therapeutic agents. If a more refined CNS disease
model could be realized on a microplatform, it would make drug discovery faster and [160_TD$DIFF]cheaper
compared with conventional processes, profoundly affecting the pharmaceutical industry.
Combined with genetics and iPSC techniques, it would be possible to make chip-based
personalized diagnoses, checks of disease progress, and treatment, which would represent
a major medical contribution. This model could also be used for the screening of food,
cosmetics, and other potential environmental toxins.

Concluding Remarks
Recent developments in microplatform technology have given rise to new strategies that are
expected to generate advances in in vitro models of CNS pathophysiology. Here, we
introduced basic design principles and various microplatforms for CNS disease models
(Table 2). Basic technologies that have commonly been applied to CNS disease models
include compartmented microchannel chambers, co-cultures, and MEAs. CNS disease
models on microplatforms have great prospects for several reasons. First, it is possible to
adjust the variables in the CNS environment within them. Second, they could be the standard
tools of measurement for CNS disease progression. Third, continuous and long-term obser-
vation can give a better picture about CNS pathophysiology. To date, in vitro models still only
partially mimic the CNS environment, and we expect that improvements in microtechnologies
will enable CNS complexities, such as spatial 3D architecture and physiological stimuli, to be
properly modeled. In the near future, we expect new research into microplatform-based CNS
disease models to extend to 3D bioprinting and iPSCs on the microplatform ( [161_TD$DIFF]see Outstanding
Questions). We further anticipate extension of their applications to the screening of drugs,
food, cosmetics [162_TD$DIFF], and other toxic materials, the discovery of disease mechanisms [163_TD$DIFF], and [164_TD$DIFF]the
diagnosis and treatment of disease.
Table 2. Summary of CNS Disease Models on Microplatforms

Disease Pathology Details Comments Device used Refs

AD Ab Neuronal network/
axonal transfer

Corticohippocampal
pathway

Multichamber [16]

Transneural transmission Compartmented
microchannel

[62]

Motility of microglia
responding to various types
of Ab in a regulated manner

Microfluidic
chemotaxis

[66]

Ab toxicity Quantitatively analyzing effect
of oligomeric Ab on neurons

Microfluidic
gradient

[67]

Ab oligomers failed TrkB
processing

Compartmented
microchannel
with time lapse

[18]

Tau Transfer through
synapse

Lentiviral rat model of
hippocampal NFD

Microchannel
chamber

[72]

Mitochondrial trafficking in
primary neuronal axons

Compartmented
microchannel

[19]

Trends in Biotechnology, Month Year, Vol. xx, No. yy 11



TIBTEC 1300 No. of Pages 15

Table 2. (continued)

Disease Pathology Details Comments Device used Refs

Comparison of
3-repeat tau and
4-repeat tau

Gradient of okadaic
acid in taunopathies

Okadaic acid induces
hyperphosphorylation of tau
proteins

Co-pathological
neural cell culture

[25]

Hyperphosphorylation Monitor retrograde neurite
degeneration in hippocampal
slice

MEA [68]

Axonal Axonal excitotoxicity Glutamate excitotoxicity Compartmented
microchannel

[63]

Glia Role of astrocytes Hippocampal neuronal
damage by soluble
mediators of hippocampal
astrocytes, which were
exposed to Ab + interleukin
(IL)-1b

Overflow
microfluidic
networks

[20,65]

Synapse Synaptoprotective
drugs evaluation

NAD+ and Rho-kinase
inhibitor Y27632 prevent
synaptic disconnection

Compartmented
microchannel
with a central
accessible
channel

[64]

PD Axonal
transport

Mitochondrial
transport defects of
dopaminergic axons

Neurons from transgenic
mice

Open
compartmented
microchannel

[13]

MS Axonal
degeneration

Molecular control of
microglial
phagocytosis of
degenerating axons

TRIF blocks induction of
interferon response and
inhibits microglial
phagocytosis of axon debris

Axon–microglia
co-culture
microfluidic

[78]

Epilepsy Status
epilepticus

Application of
4-aminopyridine,
removal of Mg2+ ions

Confirm antiepileptiform drug
effects by recording ret
hippocampal slice surface

MEA [71]

ADNFLE In vitro spontaneous
hyperexcitability

Displayed by primary
neocortical neurons from
transgenic mice (b2-V287L)

MEA [92]

ACC epilepsy Thalamic inputs in
thalamic-ACC slice

Repeated stimulation of
thalamus inhibited
epileptiform activity

MEA [91]

NMDAR
encephalitis

NMDAR
binding
antibodies

Effects of patient CSF
on in vitro neuronal
network

Served a method of CSF
specimen investigation from
patients with antibody-
negative NMDAR
encephalitis

MEA [93]

Migraine Cortical
spreading
depression

A mouse brain slide
model

Focal stimulation Perfusion
chamber with
fluid injection
ports

[28,29]

DAI/traumatic
brain injury

Stretch injury Dynamic stretch injury
of axons

Dynamic stretch ruptures
axonal microtubules at
specific points, triggering
depolymerization of
microtubules

Controlled air
pulses on
micropatterned
channels

[80]

Uniaxial strain Observed in real time and
over long time

Two layers of
PDMS with
microchannels

[81]
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