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a b s t r a c t

Recent theoretical and experimental works have connected Hebbian plasticity with the reinforcement
learning (RL) paradigm, producing a class of trial-and-error learning in artificial neural networks
known as neo-Hebbian plasticity. Inspired by the role of the neuromodulator dopamine in synaptic
modification, neo-Hebbian RL methods extend unsupervised Hebbian learning rules with value-based
modulation to selectively reinforce associations. This reinforcement allows for learning exploitative
behaviors and produces RL models with strong biological plausibility. The review begins with coverage
of fundamental concepts in rate- and spike-coded models. We introduce Hebbian correlation detection
as a basis for modification of synaptic weighting and progress to neo-Hebbian RL models guided solely
by extrinsic rewards. We then analyze state-of-the-art neo-Hebbian approaches to the exploration–
exploitation balance under the RL paradigm, emphasizing works that employ additional mechanics to
modulate that dynamic. Our review of neo-Hebbian RL methods in this context indicates substantial
potential for novel improvements in exploratory learning, primarily through stronger incorporation of
intrinsic motivators. We provide a number of research suggestions for this pursuit by drawing from
modern theories and results in neuroscience and psychology. The exploration–exploitation balance is
a central issue in RL research, and this review is the first to focus on it under the neo-Hebbian RL
framework.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Reinforcement is a potent and biologically plausible paradigm
or learning (Sutton & Barto, 2017), with promising results for
rtificial neural networks (ANNs) under a set of methods known
s neo-Hebbian plasticity (Gerstner, Lehmann, Liakoni, Corneil,
Brea, 2018). For spiking neural networks (SNNs), neo-Hebbian

earning is also commonly known as reward-modulated spike-
iming-dependent plasticity (R-STDP) (Frémaux & Gerstner, 2016).

Hebbian learning comprises a class of two-factor formulations
or unsupervised learning of synaptic weights based on coinci-
ent activity between pre- and post-synaptic units. For SNNs,
nsupervised STDP implements Hebbian plasticity on the basis
f near-coincident activity, allowing changes to synaptic strength
o scale or reverse sign according to the temporal proximity and
rdering of pre- and post-synaptic spike events.
Inspired by neuroscientific research on the neuromodulator

opamine, neo-Hebbian methods extend Hebbian plasticity
hrough the incorporation of environmental rewards as a third
actor to gate and modulate the scale of weight updates. Neo-
ebbian plasticity has been shown to enable semi-supervised
Gardner & Grüning, 2013; Hoerzer, Legenstein, & Maass, 2012;
ozafari, Ganjtabesh, Nowzari-Dalini, Thorpe, & Masquelier, 2018
ogodin, Corneil, Seeholzer, Heng, & Gerstner, 2019) as well as
emporal-difference (TD) learning in both spiking (Izhikevich,
007) and non-spiking ANNs (Gordon, Dorfman, & Ahissar, 2013).
An increasing body of reinforcement learning (RL) research

n the topic of neo-Hebbian learning has prompted a number
f review articles (Feldman, 2012; Frémaux & Gerstner, 2016;
erstner et al., 2018; Kuśmierz, Isomura, & Toyoizumi, 2017;
oelfsema & Holtmaat, 2018; Shouval, Wang, &Wittenberg, 2010;
etzlaff, Kolodziejski, Markelic, & Wörgötter, 2012). These re-
iews range in generality and can be categorized to include works
hich: (i) cover neo-Hebbian learning across all of the major
achine learning paradigms, (ii) examine the role of neo-Hebbian
L under broader contexts such as the consolidation of associative
emories, and (iii) assess the relationship between specific neo-
ebbian formulations and their counterparts in computational RL
heory.

There has been no substantive treatment on the exploration–
xploitation balance in this context despite a growing interest
n neo-Hebbian RL. This gap in the review literature is partic-
larly opportune given an increasing volume of computational
orks expanding upon neo-Hebbian plasticity to integrate these
oncepts. The development of novel neo-Hebbian exploration
ethods may be further aided by drawing from a vast body
f research in neuroscience and psychology on the causes and
echanics of exploratory behaviors in nature.
This review targets two primary objectives: (i) to elucidate

he limitations of current neo-Hebbian RL methods which modu-
ate exploration–exploitation dynamics through extended learn-
ng formulations; and (ii) to provide novel recommendations,
erived from recent research in biological learning, which will

nable future work in this domain to improve upon existing

17
methods substantially. Proper coverage of the state–action space
of an environment is essential not only to learning accurate
estimates of the long-term value of context-specific behaviors
but also to the ability of a learning agent to generalize between
similar environments.

The construction of this review proceeds as follows: the re-
mainder of Section 1 introduces topics pertinent to the scope of
the review, presents motivations for pursuing their study, and
discusses relevant contributions made by related reviews on neo-
Hebbian learning; Section 2 provides an approachable introduc-
tory treatment on foundational neo-Hebbian methods, including
the requisite concepts and formulations through which they may
be understood; Section 3 focuses on neo-Hebbian formulations
that employ more complex factors to guide exploration, with
analysis of current state-of-the-art methods enhanced by con-
sideration of results and theories thereon from neuroscience and
psychology; Section 4 expands on the individual review analyses
from Section 3 with concepts from the broader literature on
learning theory to suggest methods by which their approaches to
the exploration–exploitation balance may be extended; and Sec-
tion 5 offers concluding remarks which emphasize key takeaways
from the reviewed material.

1.1. Motivations and scope

Deep learning (DL) derived approaches to decision and plan-
ning problems have dominated many headlines in recent years,
fueling fervor for machine learning research with superhuman
performance on a number of challenging but narrow tasks —
most readers will be aware of the progress in competitive games
achieved by the AlphaGo Zero system (Silver, et al., 2017), for
example. While these performance accomplishments are extraor-
dinary and have added much to the study of computational
optimization for RL, they do not represent new knowledge in
our theoretical understanding of value-driven learning. Hebbian
plasticity often serves as a set of models which allows for testable
interplay between the experimental observations of biological
neuroscience and the conceptual predictions of computational
neuroscience. While this may seem a purely academic benefit, the
interaction between these research domains has a long and fruit-
ful history which has provided much of the theory underpinning
today’s top performing computational approaches (Gerstner et al.,
2018; Kuriscak, Marsalek, Stroffek, & Toth, 2015).

This review focuses on the exploration–exploitation dilemma,
a longstanding open problem in general RL (Sutton & Barto, 2017),
in the context of neo-Hebbian RL. Computational RL tasks an
agent to learn through trial and error interaction with a given
environment. This is accomplished by sampling actions in visited
states of its environment, observing the consequences of the
actions taken in each state, and updating its action selection
policy to maximize a cumulative reward value. The aim of max-
imizing the reward signal received through acting within the
environment is known as exploitation. Given some experience

acting within the environment, the agent is able to exploit the
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nowledge acquired about its reward structure with the expec-
ation that pursuing the highest valued states (or state–action
airs) will maximize the reward received. For such an exploitative
trategy to be effective at reward maximization, the agent must
ufficiently sample the state–action space of its environment by
xploring previously unvisited states as well as previously untried
ctions at visited states.
For most tasks of interest in computational RL, it is simply

nfeasible to perform an exhaustive exploration of the environ-
ent and its responses to the agent’s action space, as the state
nd action spaces may be quite vast and possibly continuous.
urther, state transitions and reward functions may be stochastic,
equiring many visits to calculate an accurate expectation of
heir value. These factors make brute force exploration strategies
ighly inefficient in the best case and practically indefinite in the
orst. Given this abstract view of the trial and error learning
hallenge, we can define the exploration–exploitation dilemma
n terms of the trade-off or balance that must be maintained
etween these competing aims during the course of learning
o act within an environment. As the agent can neither always
xplore nor always exploit to efficiently learn a useful policy,
ome mechanism must be employed to determine when the
gent should exploit previous learning and when it should instead
xplore available options that may or may not result in increased
umulative rewards.
The significance of our scope has practical bearing on the

urrent state of RL research. In many tasks of interest both to
heoreticians and engineers, the reward landscape of a defined
nvironment is often sparse and/or non-static (Gregor & Spalek,
014; He & Zhong, 2018; Hu, Song, & Huang, 2019; Machado,
ellemare, & Bowling, 2020). This means that the reward signals
vailable may often fail to guide the learning algorithm towards
ptimal or near-optimal solutions. Handcrafting reward struc-
ures using domain knowledge can often allow experimenters to
ircumvent this problem without producing a solution to it. There
re also numerous techniques that combine random or semi-
andom decisions with variations on the learning rate parameter
n an effort to increase the likelihood of the model discovering in-
ormative structures in the environment by chance. Neither case
epresents a general solution to the open problem of plausibly
timulating exploratory behaviors in computational agents.
Neo-Hebbian RL provides a framework wherein additional fac-

ors beyond the reward signal may be incorporated to influence
he rate and direction of learning. The interaction between extrin-
ic and intrinsic motivational signals in neo-Hebbian RL has been
hown to produce naturalistic exploratory behavior using only
imple models of these factors. We bring focus to these methods
o assess them in light of more recent research from psychology
nd biological neuroscience, with the aim that their improvement
ay inform future approaches to the exploration–exploitation
alance across the RL paradigm.

.2. Related works

Hebbian plasticity is a well-established framework for algo-
ithmically representing the physiological changes induced by
oincident activity between connected neurons. As a newer ap-
roach to biologically plausible learning which combines purely
ocal factors with global value signaling to enable innate RL in the
odel, neo-Hebbian research has sparked a number of insightful

eview articles. These include works addressing neo-Hebbian RL
or both rate and spike encoded neuron models, and we briefly
iscuss the significance of these related references in this section.
Shouval et al. (2010) discussed R-STDP (the spiking class of

eo-Hebbian plasticity formulations) in a broader context which
onsiders the temporal interplay of observed biophysical changes
18
during learning at various granularities (milliseconds, seconds,
minutes, etc.). Drawing from results in biological neuroscience,
the authors focused on experimental evidence suggesting that
natural learning rules involve a high dimensional parameter
space that may be better modeled by focusing on the dynamics
of intracellular calcium messaging instead of spike trains. Under
their perspective, STDP operates on a relatively fine temporal
scale to induce intermediate changes such as the creation of
synaptic tags. Temporally broader biophysical changes, such as
the release of dopamine to portions of the brain in response
to certain environmental conditions, then serve to regulate the
learning rules which operate on the changes at finer granularities.
While the debate between the significance of calcium messaging
and that of neural spike events is beyond our present scope,
this work provided well-reasoned arguments suggesting that the
interplay between Hebbian (spike timing) and neo-Hebbian (neu-
romodulation) factors is more complex than can be represented
by the gating and scaling effects provided by using only a simple
signal representing extrinsic reward.

Feldman (2012), with a similarly biological emphasis, provided
a broad overview of STDP focusing on the impact of spike timings
relative to other factors such as firing rates, cooperative and
competitive neural activation patterns, and so forth. Emphasis
here was placed on the cellular mechanisms believed to imple-
ment STDP on a biological level, including the manner by which
dopamine alters the shape of the STDP window at synapses in-
volving different types of biological neurons. This work provided
additional bolstering of neo-Hebbian theory through its analysis
of experimental results illustrating variations in the effects of
dopamine on inducing plasticity changes at the cellular level
under varied conditions. This may be interpreted as indication
that a more complex model of neuromodulation is needed to
account for seemingly contradictory effects such as the synaptic
conversion of long-term potentiation (LTP) to depression (LTD),
among other phenomena.

In Tetzlaff et al. (2012), the topics of learning and memory
are decomposed along a temporal axis to argue that STDP should
be considered a prominent factor in a more complex learning
framework. By dissecting the learning problem according to this
temporal scale, the authors presented a solid evolutionary argu-
ment with strong support from current neuroscientific research
for the existence of differing yet overlapping mechanisms of
learning to coexist in highly developed neural systems. From this
perspective, the emergence of reinforcement as one of the slow-
est and longest acting mechanisms that influences the learning of
perception and behavior is a natural consequence of the scale and
constraints inherent to the problems that biological RL addresses.
Not only are real rewards sparse and highly dynamic but real neu-
ral networks, while undeniably powerful in their problem solving
capacity, are evolved adaptations subject to metabolic limitations,
finite channel capacity, propagation delays, and likely numerous
more factors that impact the computations they perform. While
this work did not focus exclusively on topics pertinent to RL,
we found its suggestions recommending an increased research
focus on the functionality of inhibition and learning at inhibitory
synapses to be particularly apt.

Frémaux and Gerstner (2016) provided one of the first com-
prehensive reviews to focus exclusively on R-STDP methods —
many of these spiking neo-Hebbian approaches had been previ-
ously developed by the authors of this paper. In their overview
of spiking three-factor STDP RL formulations, the authors fo-
cused on neuroscientific evidence for gating versus multiplicative
impacts to STDP induction under modulation by dopaminergic
reward. The authors further discussed how to accurately model
the quantity of dopamine both during and between rewarding
events. Although the available evidence discussed in relation to
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heir focal topics is largely inconclusive, this work is an excellent
ntry point for an accessible but in-depth introduction to R-STDP
ethods.
Kuśmierz et al. (2017) offered a more topical treatment of

ulti-factor Hebbian learning which was not limited to the do-
ain of RL. This perspective considered a number of potential

actors beyond the typical use of dopamine reward signals, in-
luding other neuromodulators like acetycholine or serotonin.
his expanded focus drew attention to the potential roles that
uch additional factors may serve during the learning process,
nd it was speculated that the combination of several additional
actors may enable the coexistence of different types of learning
n a single biological system by providing distinct value and error
ignals at differing temporal and spatial granularities.
Roelfsema and Holtmaat (2018) focused on the topic of synap-

ic plasticity in sensory cortices. This work integrated a wealth
f experimental results to assess the plausibility of neo-Hebbian
heory, covering support for (and in some cases against) theories
elating to the functionality of synaptic tagging, the sharpening of
eceptive fields under directed attention, among other pertinent
pen issues in this domain. Their coverage included substantial
nalysis of the potential role of feedback connectivity involving
nhibitory interneurons in learning during sensory processing.

Gerstner et al. (2018) devised a categorical system for as-
essing various neo-Hebbian RL approaches in the literature and
nalyzed each prospective sub-class in the context of the avail-
ble support for their existence in biological nervous systems.
his paper provided discussion on the potential for surprise-
riven learning to occur in neo-Hebbian contexts, although their
efinition of Hebbian learning was arguably stretched by in-
luding sub-threshold potentials in addition to spiking action
otentials. The authors additionally argued that separate eligibil-
ty traces for potentiation and depression at the synapse should
e maintained. These traces would follow non-identical dynamics
o stabilize dynamics in recurrent circuits and potentially permit
he emergence of natural event prediction mechanics, a perspec-
ive which we find well supported by both the neuroscientific and
omputational literature.

. Background

To enable a more rigorous treatment of the topics of neu-
omodulation and RL under neo-Hebbian plasticity, this section
riefly introduces the standard notation for the computational
odels discussed in later sections, provides pertinent background
etail on some concepts of significance to the topic of learning,
nd introduces the prevailing paradigms of artificial learning
lgorithms.
In the following sections, when discussing the dynamics for a

iven pair of neurons connected via synapse, we assign the pre-
ynaptic unit the index j and the post-synaptic neuron the index
. We may represent the output or ‘‘activation’’ of each unit by yj
and yi, respectively. These activation values, which may be either
continuous or discrete, will typically refer to the output of some
(potentially non-linear) weighted function of the unit’s inputs.
The weights used for the calculation of a neuron’s activation are
the target of the learning or plasticity rules discussed herein, and
we represent the general efficacy of the pre-synaptic unit j in
ffecting the activity of the post-synaptic unit i by the weight
j,i. For a thorough introduction to the modeling of neuronal dy-
amics, including the wide variety of neuron models found in the
exts we discuss later, we refer interested readers to the standard
ext found in Gerstner, Kistler, Naud, and Paninski (2014).

In the remainder of this review, we refer to computational
odels of neurons as being either spike-based or rate-based.
his distinction is most easily understood from the perspective
19
of the temporal granularity used in the modeling of neural activ-
ity. When we refer to spike-based neural network models, this
signifies a finer temporal granularity of the neuron model that
captures the timing t (f ) of fired action potentials. This granular-
ity contributes an increased biological realism to SNN simula-
tions, capturing the temporal relationship whereby spikes from
pre-synaptic neurons drive changes to the membrane poten-
tial of post-synaptic units that then may or may not cause the
post-synaptic unit to fire at a later time.

Maintaining a record of the timing of spikes for both pre- and
post-synaptic neurons allows for learning rules that consider both
the temporal distance and order of spike events as factors, which
we discuss in greater detail in Section 2.1.3. Although the focus
of this review is limited to neo-Hebbian learning rules and the
mechanics by which they manage the exploration–exploitation
balance in RL tasks, there are a several prominent spike-based
neuron models that underpin implementations of these neo-
Hebbian networks. These include frequently used models in the
computational neuroscience literature such as Integrate-and-Fire
(IF) models (Lapique, 1907; Tuckwell, 1988), which are rela-
tively expedient computationally and have been well studied in
a number of model variations (Fourcaud-Trocmé, Hansel, van
Vreeswijk, & Brunel, 2003; Hansel & Mato, 2001; Latham, Rich-
mond, Nelson, & Nirenberg, 2000), as well as neuron models
that more faithfully reproduce biological neural data such as
the Izhikevich model (Izhikevich, 2003) and the Spike Response
Model (SRM) (Gerstner, 1990; Gerstner, Ritz, & Van Hemmen,
1993). Paugam-Moisy and Bohte (2012) provide a highly accessi-
ble introductory treatment of these commonly employed neuron
models.

Rate-based neurons model activity at a coarser temporal gran-
ularity than their spike-based counterparts, condensing the tim-
ing details of individual spikes into an average rate over uniform
windows of time. Typically, simulations for rate-based ANNs do
not actually model the spiking activity of biological neurons or
the changes in membrane potential associated with it. Rather,
rate-based neurons produce activation or output values as a
(in most modern cases, non-linear Apicella, Donnarumma, Is-
grò, and Prevete (2021)) function over a weighted sum of their
pre-synaptic inputs. These activation values then represent the
average spike count the unit would produce as output (to any
post-synaptic neurons) over the next temporal window, although
this aspect of biological realism is often neglected to allow for
negative activation values that are understood to be inhibitory as
negative rates over time are not biologically possible.

2.1. Adaptation and synaptic plasticity

Plasticity rules are attempts at computationally recreating the
persistent changes in efficacy observed at synaptic junctions be-
tween pairs of neurons. These rules form the basis of learning
algorithms for the neural network models in the context under
review. As neo-Hebbian RL significantly extends Hebbian learn-
ing, in this section we provide an introductory treatment of the
concepts and prominent formulations for this foundational class
of bio-plausible learning algorithms.

2.1.1. Hebbian learning rules
Often cited and occasionally poorly paraphrased, the modern

foundation of correlation-derived learning, Hebb’s postulate (fa-
mously stated on page 62 of Hebb (1949)), proposes: ‘‘when an
axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased’’. The concept
Hebb described is now referenced as long-term potentiation (LTP)
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t the synaptic level, through which the relative efficacy of the
onnection between two neurons, typically treated as a weighting
alue of the connecting synapse, increases due to the effects of a
re-synaptic action potential contributing to the generation of a
ost-synaptic pulse.
We now know that correlated LTP alone is insufficient to

apture the complex synaptic dynamics observed experimentally,
o additional formulations for observed long-term depression
LTD) of the efficacy, or weight, of a synaptic connection are re-
uired (Dong, et al., 2012; Malenka & Bear, 2004). These may take
he form of anti-Hebbian learning formulas, wherein pre-synaptic
ulses driving post-synaptic spikes result in a net reduction of the
mpact of the synapse in question, or of frameworks that model
he impact of improperly ordered spike pairs (a reversed spike
rdering from standard Hebbian description). Other plausible
echanisms consider the concept of atrophy upon the synaptic
onnection as a factor that counteracts the monotone increases
ictated by correlated LTP under Hebbian learning.
In the context of rate-based Hebbian learning, simultane-

us correlated neural activation is typically (but not always)
mployed rather than an explicitly causal model which incor-
orates the timing of neural activations. If the rate of activa-
ion of two connected neurons are both coincidentally height-
ned/dampened, we may consider their activity to be correlated;
f the activation rates diverge between the same pair of units, we
onsider their activity to be anticorrelated. These cases are typi-
ally associated as conditions to trigger LTP and LTD, respectively.

w

dwj,i

dt
= f (wj,i)(yj − yout )(yi − yin) (1)

Eq. (1), adapted from Kuriscak et al. (2015), provides a stable
orm of rate-based Hebbian learning which models both LTP and
TD. Weight changes for the synapse connecting unit j to neuron
occur as a product of three expressions: (i) a function on the
urrent weighting of the connection, which may introduce non-
inear dynamics to weight changes; (ii) the difference between
he current output firing rate of the post-synaptic neuron i and
n upper bound threshold for output firing rates yout ; and (iii)
he difference between the current input firing rate from pre-
ynaptic unit j and the respective upper bound threshold for
nput firing rates yin. The use of differences between firing rates
nd threshold parameters, which can allow one or both of the
atter multiplicative factors to take a negative sign, enables LTD to
ounteract unstable growth of the weight. This particular formu-
ation implements both pre and post-synaptic gating when both
hreshold parameters are non-zero.

wj,i = αyi(yj − yiwj,i) (2)

Oja’s Hebbian learning rule, shown in Eq. (2), allows for a
iven neural unit to perform principle component analysis over
ts inputs (Oja, 1982) and is among the better studied variations
n rate-based unsupervised Hebbian learning. The expression in
arenthesis is considered the effective input to the neuron and
erves to stabilize the growth of weights against divergence.
arameter α serves as a learning rate to scale the magnitude of
eight updates.
While many other variations on the basic Hebbian learning

ule exist, these rules operate on the same essential components
the current synaptic weight and the activation rates of both
re- and post-synaptic units. It is also possible to model causality
the effect of the pre-synaptic unit on the post-synaptic one –
y using activation values which are not coincident in time. An
xample of this class of rate-based Hebbian learning is Rarely
orrelating Hebbian Plasticity (RCHP), introduced in Soltoggio
20
and Steil (2013). The original form of RCHP is expressed below
in Eq. (3).

∆wj,i =

⎧⎨⎩
+0.5 if yj(t − ∆t)yi(t) > θ+

−1 if yj(t − ∆t)yi(t) < θ−

+0 otherwise
(3)

This model of rate-based Hebbian learning induces speci-
ied, asymmetric weight adjustments for LTP and LTD when the
roduct of post-synaptic activity (at the current time) with pre-
ynaptic input (over a small window of time ∆t) exceeds (LTP) or
ails to meet (LTD) established thresholds for their magnitude –
+ and θ−, respectively. By ignoring common correlated activity
etween units – that which falls between the lower and upper
hresholds specified – this formulation allows for RCHP to adjust
he weighting only for near-coincidental neural activations that
re highly likely to be correlated (or anticorrelated in the case of
TD). This rule can produce similar learning of weights to STDP
n a highly efficient manner, as rate-based neurons are more
fficient to simulate.

.1.2. Differential hebbian learning rules
While the rate-based form of Hebbian learning described

bove implements synaptic plasticity changes on the basis of co-
ncident pre- and post-synaptic activations, differential Hebbian
earning (DHL) rules compute updates to synaptic weights using
ates of change (derivatives) in neuron activations. This enables
he learning rule to account not only for correlation but also for
ausation in the propagation of neural signals. We can assess this
n Eq. (4), which is derived from the original formulation for this
lass of Hebbian learning in Kosko (1986).

w∆wj,i = ẏiẏj (4)

In the equation above, ẏ refers to the derivatives of the pre-
j) and post-synaptic (i) activities. This requires a differentiable
odel of neural activity that captures transient increases and
ecreases, which can be obtained for discrete event models by
sing an appropriate kernel on the activations. The use of such
ernels, where necessary, ensures that a monotonic increase in
he activation of a given unit temporally precedes a peak ac-
ivation that is followed by a monotonic decrease. Using the
verlap in these transients of neural activity enables a temporally
ymmetric modeling of LTP and LTD phenomenon. Considering
he case when pre-synaptic neuron j begins to increase in ac-
ivation (signifying that ẏj > 0) shortly before unit i does the
ame, ẏ is positive for both pre- and post-synaptic units, yielding
TP of the synaptic connection during their overlapping transient
ncreases. This is followed by a brief period of LTD when ẏj be-
omes negative before ẏi does. If we reverse the ordering of these
ransient increases, the cumulative change to synaptic weighting
emains the same as both ẏi and ẏj are positive until, in this
ase, ẏi becomes negative first. The net effect in both cases is
TP or increased weighting. Conversely, when either unit begins
transient increase in activity while the other is expressing a

ransient decrease, their overlap yields opposing signs and thus
roduces LTD.
To better reflect the causal relationship between pre- and

ost-synaptic activities, Porr and Wörgötter (2003) introduced a
emporally asymmetric variant of DHL called isotropic sequence
rder (ISO) learning. This DHL variant models causality by replac-
ng the derivative of the activation of the pre-synaptic unit ẏj with
he current activation, yielding Eq. (5).

w∆wj,i = ẏiyj (5)

This formulation by Porr and Wörgötter (2003) captures the
ame correlations in synaptic activity while enforcing the tem-
oral ordering required to infer causality in pre-synaptic activity
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riving post-synaptic responses. If pre-synaptic neuron j is active
hile unit i is becoming more active (ẏi > 0), we can infer that

the activity of j is at least partially driving the increase in activity
expressed by i and the ISO rule produces LTP. When j is active (but
not necessarily becoming more active) while unit i is becoming
less active (ẏi < 0), we know that the activity of j is not driving
this change in the activity of i and the rule induces LTD as a
onsequence. Similarly, dampened activations by unit j when i is
experiencing a transient increase yields LTD while the same lack
of activity by j results in LTP when i is becoming less active.

Zappacosta, Mannella, Mirolli, and Baldassarre (2018) con-
structed a framework to unify the variety of first-order DHL rules
proposed in the literature, yielding general differential Hebbian
learning or G-DHL. Their formulation considers eight compo-
nents, divided evenly into differential (both factors being deriva-
tives as in Eq. (4)) and mixed (derivative and non-derivative as
in Eq. (5)) additive factors. The total of eight factors is derived
by decomposing the derivatives of pre- and post-synaptic units
into their positive and negative components. Each of these factors
can be manipulated via hyperparameter to influence their inclu-
sion/exclusion (non-zero or zero), their direction of influence (LTP
or LTD based on sign), and their contribution to weight updates
(their magnitude). The flexibility afforded by this generalization
of DHL enables the reproduction of many experimentally ob-
served neural phenomenon, as demonstrated in Zappacosta et al.
(2018), and it may be employed for both rate and spike-coded
neural models.

2.1.3. Spike-timing-dependent plasticity
STDP provides a framework for formulations of biological and

artificial spiking neural systems consistent with the causal rela-
tionship central to Hebbian learning and compatible, by extension
or modification, with anti-Hebbian phenomena. As the name
implies, STDP rules employ the timings of spikes (in the simplest
case pairs, as treated here) to determine the appropriate change
in synaptic strength between the units involved. We present here
the formulation for a basic pair-based STDP update rule. Consider
a pair of neurons, j and i, connected as pre-synaptic and post-
synaptic units, respectively. We denote the times of the events
of their pre-synaptic and post-synaptic action potentials as tpre
and tpost , defining a measure on their temporal separation as
|∆t| = |tpost − tpre|. A simple update rule for the weight wj,i,
adapted from Gerstner et al. (2014), is expressed in Eq. (6).

∆wj,i =

{
A+(wj,i)e

−|∆t|
τ+ at t = tpost for ∆t > 0

A−(wj,i)e
−|∆t|
τ− at t = tpre for ∆t < 0

(6)

This formulation permits both flexible Hebbian and anti-
Hebbian dynamics through the selection of adaptation functions,
A+(wj,i) and A−(wj,i), which may model alterations of efficacy
as a function of the current synaptic weighting. The decaying
exponential term, including the LTP and LTD decay constants τ+

nd τ−, reflect the principle of temporal locality in STDP update
ules; spike pairs relatively close in time (typically on the order
f tens of milliseconds) are less coincidental and experimentally
voke stronger adaptive responses than more remote pairs.
This principle can be appreciated visually by assessing Fig. 1,

hich graphs the magnitude of plasticity changes with respect
o the timing difference between pre and post-synaptic spiking
or LTP and LTD. We refer to the distinction between LTP caused
y a pre-before-post spike pair ordering and LTD arising from a
ost-before-pre spike pairing as causal and acausal forms of STDP,
espectively. In the case of LTP under STDP, a pre-synaptic action
otential contributing to the generation of a spike at the post-
ynaptic neuron shortly thereafter implies a causal relationship
nder Hebb’s postulate. Pre-synaptic activity that follows a post-
ynaptic spike is inherently acausal, having not served to drive
21
Fig. 1. Illustration of ∆w (y-axis) with respect to ∆t (x-axis) under a general
STDP framework for both pre-then-post (causal, LTP, green) and post-then-pre
synaptic pairings (acausal, LTD, red). Adapted from Markram, Gerstner, and
Sjöström (2011). Note that the horizontal axis, corresponding to ∆t , is reversed
from the conventional left-to-right increase in value; the same is true in the
originating source graph. As the magnitude of ∆t increases between spike
pairings, the corresponding synaptic changes to ∆w become smaller — these
spike pairings, pre-then-post on the left and post-then-pre on the right, are
understood to be less indicative of a causal or acausal relationship between
the spike pairing. Conversely, as ∆t approaches 0 on the graph, indicating
a shorter temporal interval between pre- and post-synaptic spikes, the STDP
framework induces significantly stronger LTP (left, green) or LTD (right, red).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

the post-synaptic pulse which preceded it. Markram et al. (2011)
contain a highly accessible overview of the concepts and history
behind the STDP framework that provides a deeper intuition on
the biological considerations behind its development.

2.2. Learning paradigms

In regard to computational learning theory, there are three
classic paradigms: unsupervised, supervised, and reinforcement.
These broad theories on the nature of learning may also overlap
in some frameworks. This section briefly treats on the distinctions
of these approaches and their better-known methodologies.

2.2.1. Unsupervised
Having already introduced the concept of Hebbian learning,

whereby connections are strengthened through correlated ac-
tivity, the fundamental functional characteristic of unsupervised
learning is both simple and yet foundational to more advanced
schemes for learning. Unsupervised learning mechanisms such as
Hebb’s rule (Gerstner et al., 2014) for rate-encoded neural net-
works or STDP in spike-encoded variants operate on the principle
of strengthening or weakening synaptic connections irrespective
of consequent network activity. This type of learning does not
incorporate any measure of correctness or utility, yet the identifi-
cation of associations, whether simply correlational or indicative
of causality, continues to serve as an underlying factor for more
complex learning capabilities.

From an evolutionary perspective, the unsupervised aspect of
neural learning logically precedes any capacity for feedback —
the ability to distinguish similarities and differences in stimula-
tion must be possessed prior to the development of stimulus–
response dynamics, for example. Given this view of a natural
progression in the development of learned reactions predicated
on the precedence of unsupervised mechanics, we treat the ensu-
ing learning paradigms as mechanisms implementing selectivity,
among more intriguing dynamics, atop this foundation.
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.2.2. Supervised
Supervised learning methods incorporate the concept of cor-

ectness to induce selective responses; this requires an explicit
rror signaling mechanism in addition to a determined source
f ground truth. The most prolific format of supervised training
ommon in the literature is the backpropagation (BP) method
Rumelhart, Hinton, & Williams, 1986), famed for its deep learn-
ng successes in combination with the availability of large labeled
atasets and efficient gradient of error calculations (Shrestha &
ahmood, 2019). Deep learning methods have achieved remark-
ble success across many domains of machine learning, including
odels for image classification with deep convolutional networks
uch as GoogLeNet (Szegedy, et al., 2015) and language trans-
ation with attention mechanics such as the Transformer archi-
ecture (Vaswani, et al., 2017). While other supervised learning
pproaches exist (Lee, Zhang, Fischer, & Bengio, 2015; Wang,
elatreche, Maguire, & McGinnity, 2014; Zenke & Ganguli, 2018),
P is the predominant form of supervised training for artifi-
ial learning algorithms and perhaps the most exemplary of the
aradigm.
A more interesting and potentially pertinent variation on the

oncept of supervised learning is a self-supervised approach.
hile this approach has received more attention for its use in

tatic generative modeling, such as in autoencoders (Hinton &
alakhutdinov, 2006) and generative adversarial networks (Good-
ellow, et al., 2014), the use of these methods with recurrent
etworks can produce powerful sequential prediction models
Jawed, Grabocka, & Schmidt-Thieme, 2020). In these methods,
he ground truth signal is not a handcrafted indicator of correct-
ess (such as labels for classification tasks) but rather a withheld
r otherwise unseen (to the learning agent) portion of the training
ata. For time series data, this requires the model to produce
utput intended to predict the next value, corresponding to some
+ ∆t , after having received inputs over the series up to the
timulation corresponding to the current time t . The predicted
ext stimulus may then be compared with the actual next input
ata from the series and many error correction-based learning
lgorithms, such as BP methods, may be used to improve the
redictive prowess of the agent. This approach to learning over
equential data can be related to certain predictive or planning
ethods for RL, as seen in Pathak, Agrawal, Efros, and Darrell

2017) for example.

.2.3. Reinforcement
As this work focuses on reinforcement learning (RL) with

espect to bio-plausible learning models, we present here a brief
ntroduction to the classic reinforcement learning formulations
rom the broader domain of machine learning, adapted from the
odern text by Sutton and Barto (2017). In a neo-Hebbian con-

ext, RL builds upon the unguided coincidence detection of un-
upervised learning by incorporating the concepts of reward and
unishment, rather than the extension with evaluation by prede-
ermined correctness employed by supervised learning methods.

The concept of reinforcement of learned behaviors is well
stablished in the study of operant conditioning, whereby the vol-
ntary response of an organism to a given stimulus is modulated
ither to increase or decrease the probability of that response in
he future. This conditioning occurs through repeated observance
f net positive (reinforcing, either through exposure to a pleasant
timulus or removal of an aversive one) or net negative (punitive,
ither through subjection to an aversive stimulus or elimination
f a pleasant one) outcomes. In conjunction with early results
rom the study of dynamic programming, computational RL the-
ry sought to develop learning agents capable of adapting to
xperiential feedback inherent to a defined environment, rather
han through instruction by an explicit error signal. Accomplish-
ng this form of learning requires an agent to both explore its
22
environment and to learn to exploit the information gleaned
from its interactions with the environment to most effectively
maximize (minimize) the cumulative reward (punishment) to
which it is subject over some typically variable temporal scale.

Temporal-difference (TD) methods are a central framework
in the domain of RL. The simplest TD formulation, known as
TD(0) for its one-step temporal window, calculates an update
to the internal estimate of an environmental state’s value V (St )
ollowing observance of V (St+1) and any reward or punishment
t+1 generated due to the activity of the agent at the former state
t ; more abstractly, the underlying expectation of the value of
he former state is updated by the experience obtained from in-
eracting with that state through some available form of activity.

t+1(St ) = Vt (St ) + α[Rt+1 + γVt (St+1) − Vt (St )] (7)

The one-step state-value update rule for TD(0) is given in
Eq. (7), where α is a learning rate parameter, γ is a discounting
actor accounting for the delay in obtaining the reward value of
he successor state of the environment, and the term within the
rackets is typically referenced as the TD error. These updates
pply directly to the value function, an estimate of the actual
ong-term value of environmental states typically calculated by
epeatedly sampling the environment through exploration of the
tate–action space. These value function updates impact the ac-
ion selection policy through their role in determining the ex-
ected values of potential successor states. Note that an action
ith a potentially very high successor state value for a highly im-
robable state transition may not be selected by a greedy policy
f a lower valued but more likely successor state is expected to
ffer higher cumulative rewards after taking a different action.
The one-step update of TD(0) can be generalized to account

or a longer temporal window of experiential information on the
alue of a given environmental state by following the formulation
f the TD(n) state value update rule, wherein the value of the
tate observed at time t is updated at time t + n with a series
f discounted returns generated through that n-step temporal
indow; the TD(n) state value update function is given in Eq. (8),
oting that Eq. (7) corresponds to a reduction to n = 1.

t+n(St ) = Vt+n−1(St ) + α[
n∑

i=1

(γ i−1Rt+i)

+ γ nVt+n−1(St+n) − Vt+n−1(St )]

(8)

While the TD(n) method allows for effective value estimation
using delayed rewards, the temporal duration of n is fixed. The
TD(λ) method extends this approach by introducing an eligibility
trace, denoted as λ, which allows for bootstrapping of rewards re-
eived in arbitrarily distant future states into the value estimate.
he TD(λ) method is also more readily extensible to continuous-
ime modeling frameworks. Note that while Sutton and Barto
2017) use the symbol λ to represent multiple mathematical
bstractions in various contexts throughout that text, we use λ

exclusively to refer to an eligibility trace as is the standard in
most recent works on neo-Hebbian RL.

Under the TD(λ) method, the eligibility trace λ for each state is
used as a multiplicative factor on the TD error in the value update
rule (Eq. (10)). The trace’s value is a non-negative scalar which
records how often a state has been visited and how recently
these visits have occurred. The intuition behind eligibility tracing
is that frequently visited states that precede rewards are more
important for learning and their relevance has a temporal shelf
life.

λt (s) = γ λt (s) + I(St = s) (9)

(S ) = V (S ) + αλ (S )[R + γV (S ) − V (S )] (10)
t+1 t t t t t t+1 t+1 t+1 t t
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The trace update in Eq. (9) captures this. The second term on
he righthand side counts the number of times that a state has
een visited using an indicator function I which takes the value 1
hen the argument is true and 0 elsewhere. The first term causes
he trace value to decay asymptotically to zero over time accord-
ng to the trace decay parameter γ ∈ [0, 1]. As such, the value of
for a given state reflects a function of both that state’s visitation
nd its temporal relationship with delayed rewards, which is
mplicitly recorded by the amount of decay. Eq. (9) is adapted
rom Equation 7.5 in the first edition (Sutton & Barto, 1998) of
he primary text used for this section, replacing a conditional
quation with an equivalent indicator function. This particular
ormulation of eligibility tracing for computational RL was used
s inspiration for synaptic eligibility tracing methods which can
nable neo-Hebbian RL with distal rewards, as introduced in
ection 2.3.2.

.3. Modulation and reinforcement learning

We have given the relevant background for: (i) rate and spike-
ased neuron models, (ii) formulations for the basic Hebbian
earning rules, and (iii) the main learning paradigms that can
nable the extension of Hebbian learning rules. This section intro-
uces a subset of the class of RL formulations commonly referred
o as three-factor, or neo-Hebbian, learning rules. Neo-Hebbian
echanisms modulate (up or down) the change in strength be-

ween pre- and post-synaptic synapses, normally caused by a
wo-factor Hebbian rule, by incorporating the notion of value (or
eward) as a third factor.

In its most basic form, neo-Hebbian RL alters standard Hebbian
lasticity with various forms of scaling or gating in response to
lobal reward signaling. The neuromodulator dopamine is often
roposed to serve as this rapid signaling mechanism for reward
n theories of behavioral learning in animals. This interpretation
f dopaminergic neural activity has inspired a number of frame-
orks aiming to integrate the concept of TD reward errors with
ebbian learning theory (Frémaux & Gerstner, 2016; Gerstner
t al., 2018). While alternative theories on the role of dopamine in
earning have been proposed (discussed in later sections), a global
eward signal is essential for extending Hebbian plasticity into
ore complex RL frameworks and its role must be understood
efore considering alternative modulating dynamics.

.3.1. Hedonism and delayed reward
As a precursor to neo-Hebbian RL, Seung (2003) proposed ‘‘he-

onistic’’ synapses modeled as stochastic processes modulated by
global reward signal (inspired by the study of dopamine neuro-
odulation). The spiking IF neurons employed in this framework
ncapsulated the concept of synaptic weighting into a proba-
ilistic synaptic spike transmission formulation wherein learning
as a relation on global reward and the probability (pj,i) of a
re-synaptic (unit j) action potential generating the release of
ome amount of neurotransmitter to the post-synaptic (unit i)
membrane neuroreceptors across the synapse; for the purposes
of the model, this is viewed as successful spiking.

pj,i =
1

1 + e−wj,i−cj
(11)

Eq. (11) formulates the probability of a pre-synaptic action po-
ential successfully affecting the post-synaptic neuron as a logistic
igmoid function (having range (0, 1)) on the learned weighting
w) of that connecting synapse and the calcium concentration
ithin the pre-synaptic neuron. The variable c represents a sim-
le (and interchangeable) model of calcium dynamics for the
re-synaptic unit, increasing by a parameter ∆c at the moment of
re-synaptic spike generation (regardless of whether that spike
23
vent triggers release of neurotransmitter to the synapse) and
xponentially decaying by dc/dt = −c/τc thereafter. Plasticity
or the weight component under this framework (Eq. (12)) was
odulated by the global dopaminergic reward signal (R(t)) and an

eligibility trace (Eq. (13)) which decays following dλ/dt = −λ/τλ.
arameter η functions as a learning rate to scale weight updates.

dwj,i

dt
= ηR(t)λj,i(t) (12)

∆λj,i =

{
(1 − pj,i) if spike neurotransmitter release succeeds
−pj,i if release fails

(13)

The additive update rule applied to λj,i during pre-synaptic
spiking incorporates some dynamics of the eligibility trace used
in TD(λ) (Eq. (9)), increasing with the accumulation of recent rel-
evant activity and decaying with temporal distance. Seung (2003)
further conceptualized this framework as a greedy approximation
of gradient ascent through the parameter space of w, deviating
from the additive indicator function employed in the TD(λ) to
restrict the eligibility trace to have zero mean so as to prevent
bias in the weight traversal of that search space. A biologically
plausible implication (from an operant conditioning perspective)
of their formulation is the following consequence to plasticity
with respect to rewards: recent and successful spike propagations
relative to a positive reward signal result in LTP at the synapse
and successful spike propagations followed by a negative reward
induce LTD. Conversely, firing failures preceding a positive reward
result in LTD while the same failures before negative rewards
induce LTP. This is in contrast to the eligibility tracing of Eq. (9),
which is strictly non-negative and would lead only to LTP given
positive rewards and only to LTD under negative ones.

2.3.2. Distal rewards and credit assignment
Inspired by the formulations laid out in Seung (2003), Izhike-

vich (2007) incorporated dopaminergic reward directly into a
modulated R-STDP learning strategy. The idea involved mod-
ulating the effects of STDP (LTP and LTD) on weight updates
using a function of both direct environmental reward and the
impact of those environmental reward signals on the changing
concentration of dopamine over time (rather than a single, direct
reward model as employed in Equation 12 by Seung (2003)).

This work introduced a more complex eligibility trace formu-
lation, given in Eq. (14) where STDP(·) corresponds to an STDP
plasticity rule like that given by Eq. (6). The eligibility trace is
multiplied by the received temporally decaying reward signal
R(t), yielding Eq. (15) where dR

dt = −
R(t)
τDA

+DA(t) and DA(t) is some
function describing the dynamics of dopaminergic concentration.
One example function modeling diffusive dopamine concentra-
tion dynamics used by Izhikevich (2007) was DA(t) = 0.5R(t−tR)
where tR is the moment of receipt for the most recent reward
value.
dλj,i

dt
= −

λj,i

τλ

+ STDP(tpost − tpre)δ(t − t (f )) (14)

dwj,i

dt
= λj,i(t) · R(t) (15)

Using their namesake Izhikevich spiking neuron model, Izhike-
vich (2007) employed the reward modulatory signal in conjunc-
tion with eligibility tracing to solve the distal reward credit
assignment problem – the determination of assigning appropriate
credit to synaptic weights with respect to their contribution
towards rewarding or punitive performance over temporal scales
– with spiking neurons in a framework consistent with STDP. The
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Table 1
Summary of the formulations for R-STDP weight updates and eligibility trace
calculations provided for comparison of the methods surveyed above. Note that
∆(t (f )pre/post ) corresponds to tpost − tpre , the input term for spike pair-based STDP.

Source Update rules

∆wj,i = α[λiεi][R(t) − Rbase]

Potjans, Diesmann, and Morrison (2011) ∆λi = −
1
τλ
(λi −

∑
t(f )i

(δ(t − t (f )i )))

∆εi =
εi
τε

−
∑

t(f )i
(εi − δ(t − t (f )i ))

∆wj,i = [α + R(t)]λj,i(t)
Yusoffa and Grüning (2012)

∆λj,i = STDP(∆(t (f )pre/post ))

∆wj,i = η[R̄ − R(t)]λj,i
Ozturk and Halliday (2016)

∆λj,i = τλ(STDP(∆(t (f )pre/post )) − λj,i)

update rule in Eq. (14) can be viewed as an STDP-scaled form of
the eligibility trace update from Eq. (9), which performs credit
assignment for TD(λ) methods. In the context of neo-Hebbian RL,
his trace performs credit assignment not for visited environmen-
al states (as done by the TD(λ) method) but for activity over
ynaptic connections which precede rewards generated by the
nvironment.
In this neo-Hebbian form, the Dirac delta function serves as

he event indicator, comparable to I in Eq. (9), which increases
he value for a given synaptic trace λj,i at time t = t (f ), where t (f )
is the firing time of either the post-synaptic unit i (in the case of
LTP) or the pre-synaptic unit j (for LTD), whichever occurs later
in the spike pairing within the window for induction of STDP.
This event-driven step-wise increase to the eligibility trace λj,i is
scaled by the value of STDP(tpost − tpre), reflecting the dynamics
of STDP with respect to the temporal difference between pre and
post-synaptic spiking.

Many approaches to dopaminergic modulation of STDP since
Izhikevich (2007) follow similar formulations, albeit adjusted to
advance alternative aims beyond the credit assignment prob-
lem. For brevity in comparison of these spike-based neo-Hebbian
works, we provide their formulations governing weight updates
in Table 1.

Yusoffa and Grüning (2012) biased the effects of reward mod-
ulation on the eligibility trace using a learning rate α while
training spiking units to associate delayed pairings of input stim-
uli, while Ozturk and Halliday (2016) achieved output spike train
reconstruction by smoothing dopaminergic reward delivery with
respect to average reward returns R̄.

Potjans et al. (2011) formulated a more localized approxi-
mation of TD learning by modeling the reward signal R(t) as
fluctuations in dopamine concentrations relative to a baseline
Rbase, allowing the extension of an eligibility trace with an ad-
ditional ‘‘activity’’ trace ε to reconstruct the TD error for each
neural unit by interacting with the neuromodulatory dopamine
concentration during weight updates.

Soltoggio and Steil (2013) showed that a rate-based equivalent
of the R-STDP learning framework used in Izhikevich (2007) could
achieve comparable results under a reward-modulated form of
RCHP (see Section 2.1.1) in terms of learning in classical and op-
erant conditioning tasks under delayed reward. Rather than using
an explicit eligibility trace, as seen above in Eq. (14), Soltoggio

and Steil (2013) deconstructed the synaptic weights to include

24
long and short-term components such that Wj,i = W lt
j,i + W st

j,i .
Changes to the short-term component of a given weight, W st

j,i ,
which occur similarly to the updates of eligibility traces above,
immediately impact the overall weighting of synaptic input at the
post-synaptic neural unit but are not consolidated into the long-
term weighting until the delivery of reward. This allows for the
underlying Hebbian component of the three-factor neo-Hebbian
formulation to perform unsupervised learning between reward-
ing events without inducing potentially erroneous permanent
changes to the long-term weight.

∆W st
j,i (t) = −

W st
j,i (t)

τ st + RCHP j,i(t) (16)

Eq. (16) illustrates the dynamics of neo-Hebbian RCHP on
he short-term weight component, where τ st governs the decay
ate of short-term plasticity changes and RCHP j,i corresponds
o Eq. (3). Consolidation of the total weight value for each synapse
ccurs at the moment of reward delivery such that the long-
erm weight changes according to ∆W lt

j,i = R(t)W st
j,i . While the

odulatory signal R(t) responsible for induction of short-term
lasticity, in Soltoggio and Steil (2013) an essentially immedi-
tely impactful eligibility trace, was modeled as a discrete event,
his does not preclude extension to continuous-time modeling
kin to the dynamics of dopamine used by Izhikevich (2007).
n upper-bound threshold for dopamine concentration could be
sed to induce long-term LTP, with a complimentary mecha-
ism for LTD applicable in experiments which require it. The
eward prediction error theory of dopamine which inspired much
f computational RL theory is based largely on the study of
opamine transients, phasic activity by dopaminergic neurons
hich significantly deviate the extracellular concentration of the
euromodulator above or below its tonic baseline quantity in
esponse to valued stimulation.

While not explicitly focused on the trade-off between ex-
loration and exploitation in RL, Soltoggio and Steil (2013) did
riefly consider the potential impacts of their synaptic weighting
plit. Repeated rare correlated activity at the synapse can allow
or the short-term weights to grow rapidly without necessarily
mpacting the long-term component, as these changes to short-
erm plasticity decay rapidly. This may allow for the network
o explore more extreme portions of the weight space during
earning episodes in a temporary fashion, with repeated reward
eceipt inducing longer changes which encourage exploitative
trategies.
Soltoggio (2015) extended the rate-based neo-Hebbian RCHP

ramework of Soltoggio and Steil (2013) with a focus on the issue
f catastrophic forgetting in continual learning experiments. Their
pproach conceptualized the factoring of synaptic strength into
hort and long-term components as an approximate mechanism
or hypothesis testing, using the modulatory signal R(t) as evi-
dence for or against the likelihood of a reward following stimulus-
action pairs. Their newer formulation, termed Hypothesis Testing
Plasticity (HTP), eschewed modeling LTD as a consequence of
anticorrelated neural activity (the rate-based approximation of
acausal STDP in RCHP) in favor of a consistent but weak form of
weight depression provided by a slightly negative baseline value
of dopamine – a strong contrast to the positive baseline value
used in both Izhikevich (2007) and Soltoggio and Steil (2013).
This negative baseline value for the modulatory signal continually
induces LTD in the short-term weight components, which then
require more consistent associations between experienced re-
ward outcomes and stimulus-action pairs to grow large. We view
the negativity of this baseline concentration of dopamine as a
computationally expedient mechanism for replicating otherwise
biologically plausible weak LTD in the absence of reinforcement
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y reward despite the clear implausibility of a negative baseline
alue for any neuromodulator.
When combined with a threshold for induction, the second

ajor deviation of HTP from neo-Hebbian RCHP which solidi-
ies short-term plasticity into the long-term weight component
pon any reward delivery, this formulation protects the sta-
ility of the network parameters in the long-term weighting
y only adopting permanent changes which have accumulated
ubstantial evidence through trial-and-error.

wst
j,i(t) = −

wst
j,i(t)

τ st + M(t)RCHP j,i(t) (17)

∆M(t) = −
M(t)
τM + αR(t) − b (18)

wlt
j,i(t) = βH

(
wst

j,i(t) − Φ
)

(19)

Eqs. (17)–(19) illustrate the distinctions between neo-Hebbian
CHP and HTP. Short-term weights are continually updated by
are correlated activity following the RCHP rule as before, but
re now also continually modulated by the function M(t) which
odels the extracellular dopamine concentration as a decaying

unction of received rewards relative to a negative baseline value
b. Long-term plasticity is additionally modeled on a continual
asis using the heaviside step function H(·), which takes the value
1 for positive arguments and 0 elsewhere; the threshold for

ong-term LTP, Φ , ensures that positive argument values only
ccur when the short-term weight exceeds the minimum for in-
uction. β is a consolidation hyperparameter similar to a learning

rate that governs the speed of induction into long-term weight
changes. The authors included this parameter to model temporal
delays in biological plasticity changes, though they noted that
instantaneous induction (β = 1) gave similar results. To model
long-term LTD changes, a symmetric match for Eq. (19) is sim-
ple to produce using only negation and an appropriate lower
bound (Soltoggio, 2015).

2.3.3. Approximating the TD error
Q-learning, a family of TD algorithms focused on the optimiza-

tion of value estimates for pairs of states and actions (Q-values
Vt (St , At ) rather than the standard state values Vt (St ) related to
Eqs. (7), (8), and (10)), is a staple of modern RL that addresses
both the control (action selection) and evaluation (policy refine-
ment) problems (Sutton & Barto, 2017). For problem domains
where function approximation is necessary – typically those tasks
involving a continuous rather than discrete set of states and
actions – an Actor–Critic approach assigns the problems of con-
trol and evaluation to a pair of complimentary neural networks,
dubbed ‘‘Actor’’ and ‘‘Critic’’ respectively, that work in an inter-
leaved fashion to optimize the framework’s approximation of the
true Q-values for the task domain.

Frémaux, Sprekeler, and Gerstner (2013) extended the general
framework of R-STDP introduced in Section 2.3.2 to follow this
Actor–Critic network design with two networks of SRM0 spiking
neurons. Their formulation of the learning rule for both Actor and
Critic neurons replaces the eligibility trace for temporal credit
assignment with a smoothing kernel κ whose shape maintains
an implicit and decaying record of causal (pre-before-post) paired
spiking activity.

∆wj,i = αD(t)
([

Yi(X
t̂i
j ◦ ϱ)

]
◦

κ

τR

)
(t) (20)

(t) =
R(t)
N

[
N∑
i=1

Yi ◦

(
κ ′

−
κ

τR

)
(t)

]
−

urest

τR
+ R(t) (21)

=
e

−t
τK − e

−t
ϑk

(22)

τK − ϑK

25
Eqs. (20)–(22) describe the dynamics of weight updates for
synapses connecting pre-synaptic units j to post-synaptic neurons
i in terms of composite decaying learning rate α, TD error esti-
ate D(t), excitatory post-synaptic potentiation dynamics mod-
led by ϱ (formulation omitted for relevance), kernel κ (and its
imilarly omitted derivative κ ′), kernel decay and rise temporal
onstants τK and ϑK , and pre- and post-synaptic spike trains X t̂i

j

nd Yi of the form
∑

δ(t − t (f )k ) as in previous formulae. Note that
he pre-synaptic spike train vector X t̂i

j is restricted only to spikes
y pre-synaptic unit j that occurred prior to the most recent spike
y post-synaptic neuron i, as signified by the superscript t̂i which
enotes the time of the last spike by i.
Neural units in both the Actor and Critic networks in the con-

inuous control navigation tasks tested in Frémaux et al. (2013)
eceived identical inputs from ‘‘place cells’’ whose spiking activity
ignals the location of the agent relative to the centers of discrete
locks in the state space. Both Actor and Critic spiking neurons
mployed the same weight update mechanism outlined above.
nits within the Actor population received lateral connections
etween neurons indicating a preference to navigate in similar
irections wherein each unit additionally potentiated those in
ts neighborhood of action preference and inhibited those whose
pikes signal an incompatible choice. Combined with population
ector coding, this scheme allowed a discrete number of neural
nits to encode continuous action choices via N-winner-takes-all
ction selection.
Frémaux et al. (2013) reported some encouraging experimen-

al results, particularly in the learned behavior of Critic popula-
ion neurons resembling that of biological dopaminergic ‘‘ramp’’
ells which have been observed to increasingly fire action po-
entials upon approach to an expected reward. This similarity to
piking activity in biological ramp cells is shown in Fig. 2. Further,
heir derivations illustrating the processes by which the TD er-
or approximation is backpropagated for learning (despite being
ssentially undetectable within the observed spiking behavior of
ndividual artificial neural units) hints toward the biological plau-
ibility of some form of distributed backpropagation of value error
nder R-STDP methods that has, as yet, failed to be directly de-
ected by neuroscientific research but is widely theorized to occur
n biological reward-based learning under the reward-prediction
rror hypothesis.

. Exploration: Beyond credit assignment

In the context of RL, exploration is the process by which an
gent samples both the environment in which it operates and the
vailable action space through which it may alter its relationship
ith that environment. This sampling process, when combined
ith a mechanism for estimating the long-term value of states
or state–action pairs in Q-learning), is used to enable exploitative
ction selection strategies for maximizing the quantity of reward
eceived by the agent over time. This forms the conceptual basis
or trial-and-error learning in computational RL theory.

While the value estimation performed by TD methods is highly
fficient for dense and static reward landscapes under even very
imple exploration strategies such as random search, the explo-
ation process becomes a significant bottleneck in more complex
nvironments. These are often not densely filled with reward-
enerating states and in some cases the reward generated in
esponse to actions taken in a given state may change or dis-
ppear altogether. Learning exploitative action strategies in en-
ironments such as these then requires substantially increased
ampling of the action and environment spaces, which has obvi-
us impacts to both the temporal and computational efficiency of
earning to perform tasks in these environments.
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Fig. 2. Illustration of firing rate dynamics for A) rat ventral striatum ‘‘ramp cells’’ during a maze navigation task involving food rewards and B) single Critic population
euron during a linear track task.
ource: Adapted from Frémaux et al. (2013).
The reviewed material in prior sections has focused on the
onstruction of modern neo-Hebbian RL methods which extend
iologically plausible forms of Hebbian unsupervised learning to
mplement neural credit assignment through some mechanism
f synaptic selectivity, ranging from tabular traces and short-
erm weights to more compact kernel methods. While a number
f these works briefly consider the issue of stimulating explo-
ation in neo-Hebbian RL agents, their methods for doing so are
oosely equivalent to the semi-random search often used as a
aseline in RL algorithms. The most common method used in
eneral neo-Hebbian RL is to insert an additive noise function
nto the calculation of membrane potentials or weight updates
o avoid consistently favoring exploitative action choices during
earning (Huang, Wu, Yin, & Qiao, 2017).

This section considers works which have extended three-
actor neo-Hebbian RL with the intention of developing explor-
tory behaviors in learning agents that are more capable of
dapting to non-trivial reward landscapes, which may be sparse
nd dynamic.

.1. Intrinsically motivated reinforcement learning

The concept of intrinsic motivation of behavior and its distinc-
ion from extrinsic motivators stems from the study of animal and
uman behavioral learning in (extrinsically) value-neutral set-
ings (Baldassarre, et al., 2014). The prevailing hypothesis prior to
he conceptualization of intrinsic motivators was that biological
ehavioral learning occurred following a drive to reduce some
hysical need relative to the survival and reproduction of an
rganism (Hull, 1943).
If we take physical hunger as an example of one such driver

f behavioral learning, then we may view directed foraging as
behavior reinforced by consequent success in reducing the

nimal’s need for nourishment under this theory of drive re-
uction. While this theory sufficed for experimental evidence
round animal conditioning and goal-directed learning, it failed to
ccount for much of the observed behaviors in situations lacking
n obtainable goal or reward within the external environment of
he organism.

The use of the terms ‘‘intrinsic reward’’ and ‘‘intrinsically-
otivating’’ behavior was popularized in the literature on behav-

oral and developmental psychology by Harlow (Harlow, Harlow,
Meyer, 1950), among others, in attempt to explain behaviors

hrough which organisms expend time and physical effort (finite
esources from an evolutionary perspective) with no apparent
oal or external benefit. Taking example from the study cited
bove, rhesus monkeys were shown to learn to efficiently solve
on-trivial puzzles in a controlled environment without external
ncentives such as food. Further, the introduction of extrinsic
ewards (treats) during the learning process was found to disrupt
ather than enhance performance, leading Harlow to propose that
‘‘manipulation drive’’ may account for the reinforcement of their
uzzle-solving behaviors. Similar drives were proposed across the
26
literature to account for a number of human and non-human
behaviors associated with concepts such as curiosity, play, and in-
vestigation or exploration. These abstract drivers of behavior are
called intrinsic as they lack any direct and discernible connection
to an external goal or reward.

While the study of intrinsic motivation has a well-established
history in the domain of psychology, its introduction to RL theory
is more recent. In Schmidhuber (1991), the issue of efficient
exploration by artificial agents led the researchers to propose
an RL agent architecture with an adaptive world model. The
intent of their design was to produce a system that could dy-
namically identify poorly modeled portions of the environment
space which could then be targeted by a greedy exploration policy
to expedite the learning process — essentially a form of meta-
learning aimed at autonomously identifying where exploration
would be most informative. This was accomplished by jointly
training their world model with a ‘‘confidence module’’. This
module was trained through supervised gradient methods to
approximate the magnitude of weight changes induced in the
world model during its training. These approximated improve-
ment values were then used as reinforcement for maximization
by the control module of their system. Through learning to esti-
mate the performance improvements made in the world model
via sampling of state space transitions, this confidence module
was shown to significantly improve the efficiency of training the
world model on a given environment.

This approach to incorporating intrinsic motivators in com-
putational RL was formalized in Barto, Singh, Chentanez, et al.
(2004) and Chentanez, Barto, and Singh (2004), which focused
on hierarchical skill learning. Although their framework was
based on option theory and utilized a predetermined measure
of salience as additional reinforcement, their work served to
illustrate the utility of intrinsic RL for acquiring complex action
sequences to attain sparse extrinsic rewards. Schembri, Mirolli,
and Baldassarre (2007) expanded upon the methods of Chen-
tanez et al. (2004) both to generalize this approach to handle
continuous state and action spaces as well as to autonomously
generate additional intrinsic reinforcement signals. These signals
were produced via a neural network trained by an evolutionary
algorithm and supplemented a simple prediction error calculation
to form a surprise-based intrinsic motivation value.

Singh, Lewis, Barto, and Sorg (2010) rigorously assessed the
evolutionary significance of intrinsic motivation for RL in the
context of optimal reward functions. Their experiments proved
that the optimal reward function for a given agent, which may
utilize intrinsic rewards to reinforce intermediary behaviors in
addition to the primary extrinsic rewards, will outperform or at
least equal the performance of the same agent that uses only a
fitness-based reward function. Fitness, in this context, relates to
the ability of a learning agent to achieve goals, such as successful
hunting by wild animals or cumulative point acquisition in the
context of a game.

The logic for their theoretical assessment of motivation in
the context of evolutionary fitness is straightforward and bears
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eight on the use of intrinsic motivation in RL. An entirely fitness
ased reward function, corresponding to the case of extrinsic-
nly RL, only rewards behaviors illustrated via experience to con-
er fitness for the task at hand. Reward functions that additionally
ccount for other factors, such as intrinsic motivators, reinforce
ntermediate behaviors that may enhance fitness at some later
oint for the agent — in addition to the same reinforcements
rovided by the fitness component of the reward function. This
oes not imply that every possible type and strength of intrin-
ic reinforcement will produce equal or improved performance
ompared to fitness-only reinforcement but rather that any given
itness function can be improved upon by balancing it against
ne or more other factors that incidentally enhance cumulative
itness. How to construct such an improved reward function in
he general case remains an open problem in computational RL,
nd it is possible that successfully managing the exploration–
xploitation balance requires a sufficiently good approximation
f optimal reward functions.

.2. Acetylcholine and R-STDP

Acetylcholine is thought to play a role in a number of neural
unctions, including the consolidation of memories (Fink, Murphy,
ochowski, & Booth, 2013; Golden, Rossa, & Olayinka, 2016),
patial learning (Zannone, Brzosko, Paulsen, & Clopath, 2018),
nd attention to unexpected changes in stimulation (Brzosko,
annone, Schultz, Clopath, & Paulsen, 2017). While R-STDP has
een successfully employed in spiking models on tasks with
tationary targets such as supervised classification (Hao, Huang,
ong, & Xu, 2020) or spike train sequence reproduction (Ozturk
Halliday, 2016), applications of R-STDP methods to RL problem
omains with spiking neuron models have inherited some issues
rom their TD learning foundations. These relate to the reward
andscapes of realistic environments, which are often sparse in
erms of non-zero reward values (Machado et al., 2020) and
ynamic (Hu et al., 2019).
Learning from extrinsic reward alone in environments with

parse and/or dynamic rewards has proven quite challenging
or diverse sets of model agents. Intrinsic rewards have been
ntroduced as a compensatory mechanism to aid learning when
he reward space is insufficiently informative to guide exploita-
ion (Gregor & Spalek, 2014; He & Zhong, 2018). While the appli-
ation of intrinsic reward methods has largely been a feature of
he gradient-based deep RL approach, we present in this section
brief overview of recent efforts to incorporate some form of

ntrinsic modulation of R-STDP with spiking neurons.
The majority of works addressing the concept of choliner-

ic modulation of R-STDP in SNNs employs the modeling of
cetylcholine as a complementary factor to counterbalance the
nfluence of dopamine modulation on STDP. Dopamine modu-
ation which follows the general form outlined in the previous
ections results in learning which closely follows TD methods.
his entails a complete bias in weight updates towards exploita-
ive strategies, as reinforcement alone only solves the credit
ssignment problem but does not directly encourage exploration
f the state and action spaces in general (Sutton & Barto, 2017).
The formulation in Golden et al. (2016) modeled the purported

ynamics of acetylcholine as dampening LTP by imposing a lin-
arly decaying form of the learning rate parameter η (see Eq. (12)
or a corresponding constant learning rate equation); as such,
heir plasticity mechanism (a standard STDP formula like Eq. (6)),
ligibility trace (Eq. (23)), and consequential weight update rule
similar to Eq. (12) but with an STDP eligibility update rather than
probabilistic formula) did not differ in any substantive way from
he dopaminergic formulations presented in Section 2.3.2.
λj,i = −λj,i + ηSTDP(tpost − tpre) (23)

27
Each training trial would incur a small decrement to η which
simplistically modeled the effect of reduced levels of acetyl-
choline due to repeated stimulus exposure. This monotonic de-
crease in the learning rate was intended to capture the loss of
agent surprise when returning to previously visited states due to
trial repetition, with the decaying learning rate serving to enforce
smaller weight updates as training progressed. The cause behind
the findings in Golden et al. (2016), where a combination of
dopaminergic and cholinergic modulation reduced convergence
of performance in comparison to a dopamine reward baseline
framework (where learning rate η remains constant), should be
mathematically apparent.

We turn now to more advanced attempts at combining
dopaminergic reward with cholinergic modulation by addressing
the group of efforts made toward applying sequential neuro-
modulatory mechanisms (compared to the direct acetylcholine
modulation of dopamine modulation embodied in the methods
of Golden et al. (2016)). Brzosko et al. (2017), extending their pre-
vious work showing that dopamine signaling served to lengthen
the time window dynamics under STDP, sought to encourage
exploratory behavior by combining acetylcholine with reward
signaling in simulations of dynamic environments. This sequen-
tial approach employed an alternating (see Eq. (25)) formulation
of the effects of neuromodulation, with acetylcholine driving
LTD on active synapses over timescales with low dopaminergic
reward and with dopamine inducing LTP over eligible timescales,
including those corresponding to periods of high cholinergic
concentrations, as consistent with previous neuronal studies.

∆wj,i = ηA(
∑

t(f )pre/post

STDP(tpost − tpre) · λj,i) (24)

∆A =

{
−1 for DA−, ACh+

1 for DA+, ACh+orACh−
(25)

The framework provided by Brzosko et al. (2017) improved
upon the form of acetylcholine modeling employed by Golden
et al. (2016) by applying an alternating rather than monotonically
decaying learning rate η, where η = 0.002 in the presence of
acetylcholine without dopamine and η = 0.01 during dopaminer-
gic signaling. Further, their equation for the temporal decay of the
eligibility trace λ alternated in effect according to the presence
of dopamine, capturing the purported dynamics of dopaminergic
stimulation on the STDP time window by following a longer
exponential decay in the presence of dopamine (DA+) and a
typical exponential decay in its absence.

In their simulations requiring the learning agent to move
to a locale associated with non-stationary reward, the addition
of cholinergic modulation allowed the network to rapidly un-
learn the previously memorized goal locations. In contrast, the
dopamine-only baseline model frequently returned to formerly
learned locations of reward long after the simulation had moved
their position. This is consistent with the association between
acetylcholine and exploratory behaviors and the reinforcement
of reward coupled with dopamine that inspired their sequential
neuromodulation framework.

3.3. Weight saturation and network reconfiguration

A number of rate-based approaches to the exploration-
exploitation balance have been proposed in recent neo-Hebbian
RL frameworks. These efforts have largely avoided attempts at
explicitly modeling additional neuromodulatory factors. One ex-
ception is that of Lew, Rey, and Zanutto (2013) which proposed
a dual modulation method modeling norepinephrine rather than
acetylcholine to alter the excitability of dopaminergic neurons

such that exploitative strategies are only favored during periods
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f heightened performance (in terms of reward received). While
he model produced for that work incorporated network mod-
les and connectivity patterns with robust biological plausibility,
heir approach to the exploration–exploitation balance can be
educed to a form of semi-random search. This is due to the fact
hat during periods of lower performance norepinephrine was
odeled as having an inhibitory effect on dopaminergic neu-

ons as well as neurons in the input–output response pathway.
his resulted in a heightened noise to signal ratio for response
athway neurons such that their output would fail to meet a
re-programmed threshold for activation under a winner-take-
ll mechanism. When the model failed to produce a response,
re-programmed responses were induced with a predetermined
robability. The approach taken in Lew et al. (2013) could be
mproved by allowing the interactions of dopamine and nore-
inephrine to alter the threshold value for the winner-take-all
utput mechanisms during periods of exploration stimulated by
orepinephrine under poor performance.
Legenstein, Chase, Schwartz, and Maass (2010) proposed an

xploratory-Hebbian (E-H) learning formulation for learning un-
er dynamic RL tasks. Their approach combined averages of pre-
nd post-synaptic activations with a low-pass filter to adjust
eights such that only rewards above the mean result in re-

nforcement of coincident activity between connected units. To
timulate exploratory behavior in the model, action selection
eurons were provided input from a parameterized source of
andom noise drawn from a distribution with variance v — the
authors term this value as the exploration level parameter. The
rate-based E-H weight update formulation is shown below.

∆wj,i = ηyj(t)(yi(t) − ȳi(t))(R(t) − R̄(t)) (26)

Eq. (26) replaces the direct use of post-synaptic activity in
standard Hebbian plasticity with a measure on its deviation from
the previous activity level mean ȳi, performing a simple filter
on the post-synaptic excitation akin to a varying threshold sep-
arating LTP from LTD. The modulation factor corresponding to
reward value is similarly filtered against its mean value R̄. This
was shown by Legenstein et al. (2010) to implicitly perform ap-
propriate credit assignment without the use of eligibility tracing
or short-term plasticity components as employed by the methods
in Section 2.3.

These approximations of sliding thresholds allow for a num-
ber of mechanics for network reconfiguration at the weights.
By the term ‘‘sliding’’, we refer to the dynamic nature of this
threshold used for induction and reversal of LTP/LTD in con-
trast with the use of fixed threshold parameters. For example,
an above average reward coincident with below average post-
synaptic activity triggers LTD, while a below average reward in
the same scenario results in LTP. When received rewards increase,
neural units which also recently increased their activity should
be given the credit for their role in attaining that heightened
reward value, therefore this rule enhances the strength of their
incoming synaptic weights. Those which reduced their activity
prior to an increase in external reward are subject to weakening
of the weighting of their input, as the input from neuron j led to
reduced activity for unit i when an increase in excitation would
have been appropriate. Similar arguments for the case of reduced
rewards relative to past averages should be simple to assess here.

While their approach deviates little from the baseline addi-
tive noise methods used in standard neo-Hebbian RL, the ability
to vary the noise level to stimulate exploratory behavior dur-
ing learning is a significant factor to consider as we approach
more complex methods for biasing exploration in Hebbian RL
agents. The value for the variance parameter v need not neces-
sarily be a parameter for human specification, as it was found

to function quite well over a broad range of values and only

28
required additional weight normalization for extreme values or
when employed alongside an aggressive learning rate η. An inter-
esting variation on the E-H rule could relate the exploration level
value v to the deviation of neural activity from recent means,
deviation of received rewards from recent means, or both —
we explore the potential of such alterations more fully in later
sections, where biological plausibility implications may inform
their consideration.

Soltoggio and Stanley (2012) introduced Reconfigure-and-
Saturate (RaS) Hebbian plasticity. In this work, focus was placed
on the role of neuromodulation as a gating mechanism in neo-
Hebbian plasticity through adaptive balancing of noise in neural
activations and saturation of weight values. In their framework,
allowing for the weight values to saturate (up to some maximal
value) through typical neo-Hebbian reinforcement was shown
to enhance the stability of the network dynamics, giving rise
to purely exploitative behavioral strategies. Conversely, a com-
bination of negative reward values and increased noise in signal
transmission between connected units served to reset the learned
parameters, which trended towards common values and os-
cillated around them for the duration of the negative signal
(implicitly un-learning under negative external value). Trend-
ing towards a state of network reconfiguration, in conjunction
with noise neural activity, stimulated exploration in a similarly
randomized way to previously reviewed works but with the
potential for selective re-learning under the exploratory regime,
as demonstrated by the experiments in Soltoggio and Stanley
(2012).

∆wj,i(t) = wj,i(t − 1) +
(
C · R(t)yi(t)yj(t − 1)

)
+ ξj,i(t) (27)

Eq. (27) shows the weight update formulation correspond-
ing to RaS Hebbian learning. As their framework incorporated
learning for both excitatory and inhibitory rate-based neuron
types, the variable C takes the value of +1 or −1 for each type.
This framework additionally modeled causality through explicit
propagation delays, with the learning rule relating the activity
of the pre-synaptic unit at time t − 1 with the current post-
synaptic activation at time t . ξ is an additive noise to the weight
calculation drawn from a uniform distribution for each synapse
during updates. Through a series of experiments simulating learn-
ing under the proposed plasticity rule, network reconfiguration
under LTD induced by negative rewards was found to selectively
apply to connections corresponding to behavioral outcomes that
required change for successful task progress. One such example
discussed was re-learning to navigate due to changes in the
environment’s reward structure. Previously learned responses to
stimuli remained intact where appropriate for attaining reward.
This work was the only reviewed neo-Hebbian learning study
which forewent the use of eligibility tracing or any comparable
mechanism for synaptic credit assignment under delayed reward.
As such, future work may consider expanding upon their meth-
ods to investigate its performance in more complex tasks and
environments.

4. Motivation and modulation

Having assessed a number of recent works expanding upon
the neo-Hebbian RL framework to dynamically control the bal-
ance of exploratory and exploitative behaviors in ANN and SNN
agents, a number of trends in the experimental literature are
apparent. Each of these proposed methods has largely focused on
handling the stability–plasticity dilemma, the issue of retaining
correct, stable weight solutions that remain valid in the face
of alterations to task or reward structure, during phases of un-
learning and re-learning. In Brzosko et al. (2017), for example,
this is accomplished by flipping the sign of weight updates in
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pre-determined fashion (acetylcholine levels were determined
xternally as a parameter) in conjunction with a reduced learn-
ng rate in the absence of dopamine reward signaling. The E–H
pproach proposed by Legenstein et al. (2010) performs a similar
unction, though in this case the flip from LTP to LTD is a dynamic
echanism based an internal history of reward signals which can
e considered a simple form of intrinsic motivation (Oudeyer &
aplan, 2009).
A core commonality to these approaches is that when the

eward landscape of the task environment is either unknown or
as recently changed, the models rely on phases of random rather
han purposeful exploration. For more difficult RL tasks, where
ewards that enable the development of exploitative strategies
re sparse and potentially non-stationary, this strategy is neither
omputationally expedient nor derived from substantive biologi-
al evidence. In this final section, we suggest that the exploratory
egime of neo-Hebbian RL should be considered a more active
ather than passive process which draws inspiration from broader
nd more recent research on value-based learning.

.1. Reward-prediction error hypothesis

The reward-prediction error (RPE) hypothesis posits that the
opaminergic system encodes and communicates the discrepancy
etween predicted and presented rewards (Bunzeck & Düzel,
006; Pan, Schmidt, Wickens, & Hyland, 2005; Schultz, 1998).
his hypothesis for the role of extrinsic reward in learning stems
rom experimental observations of the behavior of dopamine
eurons under conditioning of reward responses to cuing stimuli.
esearch has shown that the dopaminergic system, when ex-
osed to an unanticipated reward, shifts from its baseline tonic
piking mode to a phasic (highly active) mode of pulsation. This
ransient response shifts with continued learning of cue-reward
airings such that dopaminergic neurons become more active
pon presentation of the cue than to the reward itself (Bromberg-
artin, Matsumoto, & Hikosaka, 2010). Conversely, omission of
xpected rewards has been associated with reduction of firing
ctivity below the baseline tonic mode. This is considered to be
nalogous to a negative RPE as negative spiking activity is not
upported by excitatory neurons nor is a negative firing rate
ossible.
The similarity between the reported dopaminergic signaling

nder the RPE hypothesis and the TD-error from dynamic pro-
ramming has been emphasized strongly as validation for TD
ethods in RL (Frémaux & Gerstner, 2016; Gershman, 2018;
läscher, Daw, Dayan, & O’Doherty, 2010; Pan et al., 2005). More
ecently, some experimental studies have suggested that the RPE
ypothesis only captures one (albeit significant) role of dopamine
eurons in regulating learning (Gardner, Schoenbaum, & Ger-
hman, 2018; Takahashi, et al., 2017; Zhang, Lau, & Bi, 2009).
xaminations of the behavior of the DA system with respect
o both aversive (punishing, ‘‘unpleasant’’) stimulation as well
s value-neutral (but unanticipated) events have encouraged re-
earchers to propose a more generalized role for dopaminergic
ctivity based on a broader view of prediction error coding in the
ervous system.
Kakade and Dayan (2002) first assessed inconsistencies with

he RPE hypothesis of dopamine, noting non-trivial dopaminer-
ic responses to stimuli not associated with external rewards
ut with features which resemble those that the organism has
reviously associated with reward. Similar phasic dopamine re-
ponses were also reported for stimuli having no resemblance
r direct relationship to an external reward but were novel or
alient to the organism. Phasic dopamine responses can also be
ound, with some variation across species, in relation to specific
ets of motor effects and stimuli that are irrelevant or even
29
detrimental in goal-directed behavior. Based on these discrepan-
cies, Kakade and Dayan (2002) proposed that the phasic response
of dopamine neurons multiplexes the RPE signal with information
about reward bonuses. These proposed bonuses would boost the
learning process based on some internal determination of stimu-
lus novelty as well as uncertainty in the identity and implications
of unpredicted stimuli in partially observable environments. By
multiplexing these proposed intrinsic bonuses, the DA system
would bias the organism towards exploratory behaviors. This
bias would then decrease over repeated exposure to the stimuli
due to habituation unless consistently reinforced by a relation to
primary reward within the environment.

Redgrave and Gurney (2006) proposed an alternative to the
RPE hypothesis based on information about the sources and
latency of the signals that serve as input to excite or inhibit
dopaminergic neurons. The information available to the DA sys-
tem in time to affect its phasic response was found to be drawn
from early processing layers in sensory pathways (the authors
focused on the visual system) which arrive immediately after
contextual and motor efferent copy signals are received via the
striatum. These early sensory processing neurons in the visual
system respond prior to gaze shifts and have been shown to be
sensitive to spatially localized changes in luminescence due to
the sudden appearance, disappearance, or movement of salient
stimuli. The latency required for the DA system to transmit a RPE-
type signal is also known to be inconsistent with the required
time for neural processing involved in the identification of objects
as well as estimation of their reward value, which can vary
greatly. This is in contrast to the phasic response of dopamine
which is generally very consistent across species and shows a
lower latency. The authors of Redgrave and Gurney (2006) sug-
gested that instead of transmitting a prediction error for reward
values dopamine neurons act to reinforce re-selection of actions
that immediately precede an unpredicted and biologically salient
event, driving the acquisition of new behaviors and sharpening
the organism’s ability to discern the effects of its own actions in
a given environment.

Gardner et al. (2018) put forward a more general perspective
on dopamine signaling, termed the sensory-prediction error (SPE)
hypothesis. Under this theory, dopaminergic signals change with
respect to perceptual prediction errors (defined by some theo-
ries as a neural form of surprise (Barto, Mirolli, & Baldassarre,
2013)). The corresponding reward error from the RPE hypothesis
becomes a special case: biological organisms perceive rewards
and punishments as stimulation and develop expectations for
their timing, location, and magnitude in a similar manner to their
generation of predictions about other aspects of the environment.
This hypothesis is more readily reconciled with experimental
results that show dopaminergic transients in response to unex-
pected, value-neutral stimulation as well as positive (phasic) re-
sponses to unexpected, aversive stimuli (Bromberg-Martin et al.,
2010). The only discernible commonality of these responses with
the stereotypical RPE phasic activity (in reaction to unpredicted
rewards) is their violation of internal expectations; this more
general hypothesis is further advanced by the established habitu-
ation of dopamine neurons during classical conditioning, whereby
the phasic response diminishes completely as rewards become
predictable.

Mirolli, Santucci, and Baldassarre (2013) were the first to rec-
oncile the competing RPE and SPE theories of dopamine, arguing
that the phasic response could be decomposed when viewing the
conditioning process as involving two related learning problems:
learning to effect the environment and learning how to exploit
effectance. These two learning goals then divide the phasic DA
response into temporary and permanent reinforcers. Learning ef-
fectance, how to act and the consequences of those actions, could
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e driven by the temporary phasic response generated due to
urprising stimuli – a form of intrinsic reward. These temporary
ntrinsic rewards diminish with habituation, no longer serving
o drive learning when they become predictable. The permanent
ortion of the response can then be understood as corresponding
o the traditional RPE signal that enables the learning of exploita-
ive behavioral responses and shifts its response to occur with
timuli that reliably predict rewards.
While it is outside the scope of this work to validate these

ypotheses on the dopaminergic system, we find the arguments
aid by Gardner et al. (2018) and Mirolli et al. (2013) to be par-
icularly motivating in conjunction with similar concerns about
he discrepancy between the RPE hypothesis and experimental
esults in both neuroscience and machine learning (Bromberg-
artin et al., 2010; Bunzeck & Düzel, 2006; Gläscher et al., 2010;
chultz, 2013; Takahashi, et al., 2017; Zhang et al., 2009). The
lternative framing of dopaminergic modulation under a joined
PE-SPE hypothesis adds weight to theories that the dopamine
ystem responds to errors generated between sensory stimula-
ion and sophisticated predictive internal models, including the
ntrinsic understanding of consequence an agent must acquire
o successfully act and react in a dynamic world. It additionally
alidates observed preferences in human and non-human animals
or seeking predictable states of the environment when available,
ven when these states have equal expected reward value to
hose that are less predictable (Bromberg-Martin et al., 2010).

.2. Free energy minimization

The free energy principle (FEP) framework established in Fris-
on, Kilner, and Harrison (2006) pursues an overarching theory
bout the necessary conditions and behaviors for life, with par-
icular developments of the theory targeting open problems in
he study of mental illness, attention to salient events, and value-
earning, among other areas of interest to neuroscience (Buckley,
im, McGregor, & Seth, 2017). While much of the success of
his framework as applied to these fields of study hinges on
ssumptions incorporated as a consequence of its derivation from
robabilistic learning theories (Bayesian belief models, ensemble
ensities, etc.) as well as from information theoretic definitions
f surprise and entropy (which are used to formally define free
nergy under this framework) that are not readily compatible
ith the established methods of neo-Hebbian RL, we find that
he more abstract perspectives on learning under a free energy
inimization principle may offer substantive guiding principles

or developing more nuanced neo-Hebbian learning models in the
uture.

Under FEP theory, learning systems experience and alter their
nvironment indirectly: some unknown generative function,
aken to represent the causal environment, applies forces (light,
ound, pressure, etc.) to the sensory boundaries of the organism
photoreceptor cells, etc.) that are converted into observations
stimuli that constitute the available evidence for internal models
f the environment) and, conversely, the organism generates
ervous responses which drive its effectors (motor cells, etc.)
o exert force upon some portion of the external environment,
hereby enabling it to alter its observations of and relationship to
he environment. Under this theory, the fully internal portion of
he organism can be considered a generative hierarchical model
hat actively infers causality in its relationship with the envi-
onment (Friston, Rosch, Parr, Price, & Bowman, 2017). Sensory
ignals are processed in increasingly abstract internal states and
eighted against the system’s model; sensation then becomes
vidence supporting or contradicting prior expectations. This
articular concept in FEP theory may be particularly compatible
s an extension of the HTP framework reviewed in Section 2.3.2,
30
which performs an RPE-only approximation of such evidence
weighting.

The primary claim of the FEP framework is that adaptation,
both internal with respect to belief updates and external with
regard to enacting effect on the environment, requires organisms
to minimize an information theoretic formulation of free energy
that is, at least conceptually, highly analogous to some definitions
of surprise (see Section 2.3 of Barto et al. (2013)). When con-
fronted with unfamiliarity in the environment, organisms have
two general mechanisms for reducing this surprise: (i) improve
the quality of expectations generated in response to ongoing
sensations such that future observations are better predicted by
their internal models or (ii) act to alter the relationship they
maintain with the environment to better align with prior beliefs.
This latter case can result in behaviors that bring the organism
to a more predictable state either by enacting a state transition
(for example, retreating from the unfamiliar state to a nearby
familiar one) or by acting to alter the unfamiliar state to make
that state conform to the organism’s belief model (such as by
shivering to generate heat for homeostasis when subjected to an
unanticipated drop in temperature).

Under the FEP then, learning is guided more generally by in-
formed surprise under a perception-inference-action cycle (Fris-
ton, 2010, 2020) that influences the development of both action
preferences and internal models of environmental dynamics. In
line with the SPE hypothesis, preferences towards predictable
outcomes in otherwise value-neutral decisions (as mentioned at
the end of the previous section) emerge as surprise-minimizing
behavior. By informed surprise, we refer to the updating of ex-
isting internal models due to the processing of new sensory
evidence that may partially violate prior beliefs. A useful analogy
for this process may be to consider what occurs when one makes
an ‘‘educated guess’’ that is mostly correct — the true answer vio-
lates a small subset of our expectations, generating some amount
of surprise which requires an update to our understanding of the
problem domain, but otherwise serves to bolster the aspects of
our belief model which accurately predicted most of the solution.

FEP theory, in conjunction with our earlier assessment of
the reward/sensory PE hypotheses on the function of dopamine,
may inform future neo-Hebbian learning frameworks in sev-
eral ways. It suggests a need for a generative model of agency
in RL, which has been shown elsewhere to be highly effective
in gradient-based approaches (Pathak et al., 2017). It also em-
braces a hierarchical structuring of the brain held to be requi-
site for higher-order functions of perception and cognition, such
as the planning of goal-directed behavior or the extrapolation
of trajectories of changes in the environment, wherein down-
stream (deeper in terms of connective distance from the agent-
environment boundary) populations of neurons adopt an increas-
ingly associative role (operating on inputs with progressively
more diverse/broad receptive fields and/or modalities) relative to
their upstream counterparts.

4.3. Predictive coding

Given an ongoing stream of signals produced by the interac-
tion of external forces upon the sensory boundary of an adaptive
organism, how might the necessary information pertinent to per-
ception be encoded? Theories of predictive coding have been
suggested as a plausible solution to the problem of recover-
ing, in terms of neural representations, the external sources of
internalized sensory stimulation (Spratling, 2017).

Predictive coding theory is predicated on empirical observa-
tions about the topological properties of cortical circuitry in the
brain, beginning with the layering of neural populations with
distinct inter-layer (both in terms of originating and terminating)
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xon projections established with the Rockland–Pandya laminar
ules (Rockland & Pandya, 1979). By convention, the laminar
rganization of the mammalian neocortex contains six layers,
hough this specificity holds more significance in computational
pproaches aiming to emulate the functionality of highly special-
zed neural circuitry (visual processing, for example) than to the
eneral problem of learning to act advantageously.
The existence of these distinct connectivity patterns, both

eedforward (from ‘‘lower’’ layers which are closer in terms of
ynaptic jumps towards the external boundaries of stimulation
nd effectance to ‘‘higher’’ layers which correspond to an increase
n depth and abstractness of processing) as well as feedback
higher to lower), prompted Rao and Ballard (1999) to propose
basic hierarchical predictive coding scheme in the context of
isual receptive fields. The intuition behind this approach is to
everage feedback predictions on the lower-level input to enforce
feedforward error coding scheme containing only useful in-

ormation for learning. This selective filtering on the processing
f inputs is intended to remove predictable information, corre-
ponding to signals from the feedback circuitry, which may be
onsidered redundant for the learning problem.
Under predictive coding theory, feedback connections convey

epresentative predictions from higher layers in the hierarchy
which are assumed to compute more abstract functions due
heir increasingly broad/diverse inputs Shipp (2016)) about the
xpected activity of lower layers to the lower layers (typically
ia auxiliary neural units which aid in the calculation of dis-
repancy between feedback predictions and feedforward stimula-
ion Spratling (2017)); feedforward activities then signal to higher
ayers the resultant mismatch between the predicted representa-
ion (from the next higher level) and the actual representation
generated in response to its inputs from the layer below it).
his coding of errors by the forward flow of information in
he network entails increasing sparsity of (feedforward) neural
ctivity in proportion to the accuracy of learned representations
f the environment at higher layers in the hierarchy (under the
ssumption that feedback connections act only to inhibit pre-
ictable forward activity, which may not reflect the full nature
f biological feedback circuitry Bastos, et al. (2012)).
A hierarchical network structure integrates increasingly di-

erse sources of information at higher levels, leveraging prior
nowledge about a given task to construct an internal topol-
gy that better enables the model to capture potential relation-
hips between inputs/outputs of the constituent sub-networks
ubsumed by the hierarchy (Mavrovouniotis & Chang, 1992).
In the context of control, an agent must learn to pursue the

est available course of action given only its prior experienced
equences of environmental stimuli and its internal estimate of
he long-term value of actions taken therein. Conversely, that in-
ernal estimation of value is predicated on the predicted series of
ctions and successor states in its trajectory. Generative modeling
ethods with feedback in the vein of representational predictive
oding theory offer an explicit means to leverage the implicit
ecurrence between actions and their consequences (defined here
o include both environmental state features and associated ex-
ernal value under SPE theory). By this we mean that it may
e advantageous to craft a network design with feedback that
irrors the dependency between states (both their qualities and
alues) and actions that is inherent to interacting with a given
nvironment.
It will also be helpful for future research to keep in mind any

emporal delays in the case of spiking neurons due to refractory
ynamics as well as inherent delays in the depolarization process;
he nature of these delays requires a form of predictive coding
hat is not only representational (in terms of one layer predicting

he activities of the layer that precedes it in the hierarchy) but

31
also temporally predictive in that feedback signaling must antic-
ipate future feedforward spiking activity to correctly align with
their representational predictive targets (Hogendoorn & Burkitt,
2019).

4.4. Research directions

Given the theoretical and experimental research discussed in
the preceding sections, there are several takeaways from the
literature which could inform future neo-Hebbian RL frameworks
aiming to actively stimulate exploratory behaviors based on in-
spiration from biological learning. While the RPE hypothesis of
dopamine which provides a theoretical basis for TD-learning
methods is largely centered on an explicit signal to stimulate ex-
ploitation, a comparable and potentially co-existent mechanism
may be required for modeling exploration as an active rather than
passive process.

In non-Hebbian RL, research in this direction has largely re-
volved around the use of intrinsic motivators, alterations or ad-
ditions to the environmental reward signal derived solely from
some measure internal to the learning agent (Oudeyer & Kaplan,
2009). A particularly interesting candidate for forming such a
signal may rest in the generation of sensory prediction errors. In
the absence of external rewards to modulate the rate and sign
of neo-Hebbian learning, the discrepancy between prediction and
stimulation (assuming a generative model as discussed above)
could be quantified to adjust the rate of learning during weight
updates. This is in part the same effect that external reward
has upon the unsupervised learning component in neo-Hebbian
RL, where heightened rewards induce stronger LTP. Constructing
a measure based on SPE would be simple in a neo-Hebbian
framework which incorporates some form of representational
predictive coding, as the feedforward flow of neural activity is
assumed to only represent information which is not correctly
predicted by the feedback loop.

While RL tasks are typically formulated with the intent of
maximizing expected external rewards, FEP theory suggests that
minimizing a SPE signal, a quantity which implicitly captures
surprise, would be equivalent to evidence maximization (Friston
et al., 2006). This does not require that the use of surprise as an
intrinsic reward signal dampen the rate of learning — logically,
heightened surprise should occur when the model has more
available information to learn about its environment and the
consequences of its actions therein.

Future research should investigate further the biological basis
for the construction of such a measure as well as the potential
dynamics for its use as an intrinsic motivator alongside the stan-
dard external reward signal. We hypothesize that such a mech-
anism for extending neo-Hebbian RL to motivate non-random
exploratory behaviors during learning can be formulated by in-
corporating one or more additional terms in the learning rule.
This expansion on the neo-Hebbian RL framework will require the
construction of a potentially complex neural network module, in
the vein of representational predictive coding theory, to generate
values internally for such additional modulatory factors.

5. Conclusions

Neo-Hebbian learning models which dynamically adjust their
exploration–exploitation balance have demonstrated improved
exploratory performance in the context of RL, particularly where
environments of interest contain sparse or non-stationary extrin-
sic reward structures. While these improvements are non-trivial,
their methods remain relatively simple in comparison to recent
advances in the domain of deep RL. We find that the domi-

nant approach employed by the reviewed neo-Hebbian methods,
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ating and scaling effects applied to Hebbian update rules via
erturbations of the learning rate parameter, lacks a clear path
or substantive improvement without re-conceptualization. Alter-
ative mechanisms for modulating this dynamic, whether drawn
rom research in neuroscience or advances in deep RL, have the
otential to open promising new lines of work for this class of
earning model.

We find that there is ample inspiration for future work in
his direction to be found in recent research in neuroscience,
articularly works relating dopamine as a neuromodulator in-
luenced by sensory prediction errors generated in response to
ctive sampling of an organism’s environment. We argue that
his extension to the reward-prediction error hypothesis, which
nspired TD learning methods, allows for a more realistic model-
ng of exploratory behaviors. The broader research in this context
uggests that representational predictive coding, when applied in
uch a way to align with the surprise minimization principles of
he FEP framework, offers a promising direction for future work
n expanding upon the neo-Hebbian RL model to more plausi-
ly replicate the exploration–exploitation dynamics observed in
nimals. We expect that further research in biological and com-
utational neuroscience will advance our understanding of the
otivational factors in value-driven learning and have significant

mpact to the design of next-generation exploration–exploitation
ynamics for artificial learning systems.
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