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a b s t r a c t

Bio-inspired recipes are being introduced to artificial neural networks for the efficient processing of
spatio-temporal tasks. Among them, Leaky Integrate and Fire (LIF) model is the most remarkable
one thanks to its temporal processing capability, lightweight model structure, and well investigated
direct training methods. However, most learnable LIF networks generally take neurons as independent
individuals that communicate via chemical synapses, leaving electrical synapses all behind. On the
contrary, it has been well investigated in biological neural networks that the inter-neuron electrical
synapse takes a great effect on the coordination and synchronization of generating action potentials.
In this work, we are engaged in modeling such electrical synapses in artificial LIF neurons, where
membrane potentials propagate to neighbor neurons via convolution operations, and the refined
neural model ECLIF is proposed. We then build deep networks using ECLIF and trained them using
a back-propagation-through-time algorithm. We found that the proposed network has great accuracy
improvement over traditional LIF on five datasets and achieves high accuracy on them. In conclusion, it
reveals that the introduction of the electrical synapse is an important factor for achieving high accuracy
on realistic spatio-temporal tasks.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Along with the dividend of Deep Learning (DL) runs out, an
ncreasing number of researchers resort to neuroscience and cog-
itive science to inject extra vitality into this artificial intelligence
ave (Fedus et al., 2020; Lillicrap, Santoro, Marris, Akerman, &
inton, 2020; Zeng, Chen, Cui, & Yu, 2019; Zhang et al., 2020;
hao, Zhang, Lu, Cheng, Si, & Feng, 2020). The development of
rtificial Neural Networks (ANNs), a key ingredient of DL, is also
eriving brand new inspirations from them. Being a bridge of
euroscience and ANNs, Spiking Neural Networks (SNNs), as the
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brain-inspired neural network models, are valuable of concern.
In these models, neurons are sparsely connected and communi-
cate via spike trains (Ghosh-Dastidar & Adeli, 2009; Schliebs &
Kasabov, 2013).

Many valuable SNN oriented concepts may contribute to DL,
especially including the biological neuronal models with rich
temporal dynamics, the bio-plausible localized learning meth-
ods, and the low power processing with structural sparsity and
event-driven mechanism. As a result, ANNs with features imitated
from SNNs improve considerably in computation efficiency of
spatio-temporal processing applications, e.g. action recognition
and video reconstruction (Han, Ankit, Sengupta, & Roy, 2017;
Illing, Gerstner, & Brea, 2019; Pfeiffer & Pfeil, 2018; Tavanaei,
Ghodrati, Kheradpisheh, Masquelier, & Maida, 2019; Wozniak,
Pantazi, Bohnstingl, & Eleftheriou, 2020).

In SNN, there are many neuron models including LIF (Abbott,
1999; Lapique, 1907), Izhikevich (Izhikevich, 2004) and Hodgkin–
Huxley (Hodgkin & Huxley, 1952), in which the LIF model is the
most popular one for its simplicity and efficiency. The traditional
LIF has many limitations and therefore many generalized LIF
models are proposed. Among them, conductance-based (expo-
nential or alpha type) accumulation is introduced in addition
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o the traditional current-based accumulation. For spike initia-
ion, Quadratic Integrate and Fire (QIF) model (Brunel & Latham,
003) and Exponential Integrate and-Fire (EIF) model (Fourcaud-
rocmé, Hansel, Van Vreeswijk, & Brunel, 2003) are proposed
or describing the nonlinear spike-generating currents of biologi-
al neurons. The adaptive exponential integrate-and-fire model
aEIF) (Brette & Gerstner, 2005) concludes several theoretical
indings including smooth spike initiation zone, subthreshold res-
nances, and conductance injection to a single model. There
re also a few works on electrical synapse modeling, however,
ost of them are bio-oriented simulations. Among them, Chow
t al. (Chow & Kopell, 2000) introduced an electrical coupling
IF model where the coupling is modeled by voltage interchange
mong cells. Literature (Ferré et al., 2015; Jordan, Helias, Dies-
ann, & Kunkel, 2020) proposed a gap-junction model in a large
NN network simulation. Some works reveal the evidence of plas-
icity of electrical synapses (Curti & O’Brien, 2016; O’brien, 2014)
n biological nervous systems, wherein the conductance changing
f the gap junction is investigated. In these electrical synapse
odels, the model parameters are measured from biological ex-
eriments, and most of the works lack of the investigation of the
earning methods and the network capability on spatio-temporal
asks.

High precision spatio-temporal recognition requires for ad-
anced learning approaches. Traditionally, bio-plausible synaptic
lasticity approaches are applied for LIF network learning, where
pike-Timing-Dependent-Plasticity (STDP) (Diehl & Cook, 2015)
nd reward-modulated STDP (Mozafari, Ganjtabesh, Nowzari-
alini, Thorpe, & Masquelier, 2019) are the most widely used
nes. With the rapid development of deep neural network
raining, several conversion-based methods (Khoei, Yousefzadeh,
ourtaherian, Moreira, & Tapson, 2020; Rueckauer, Lungu, Hu,
feiffer, & Liu, 2017) are proposed which can convert trained
igh accuracy deep neural networks to SNN. In recent years, di-
ect end-to-end training methods become popular. Among them,
pikeprop (Bohte, Kok, & La Poutré, 2000) introduces backpropa-
ation to spiking neural network training. Spatio-Temporal Back
ropagation (STBP) (Wu, Deng, Li, Zhu, & Shi, 2018) is proposed
or convolutional LIF network training. LIAF-Net (Wu, Zhang, Lin,
i, Wang, & Tang, 2021) introduces analog activation of neurons
nd enables ANN layers to be introduced to the LIF network.
hese training methods enable LIF SNN to be applied in many
patio-temporal applications (Cannici, Ciccone, Romanoni, & Mat-
eucci, 2019). However, a limited discussion is revealed for the
earning of networks built with electrical synapses.

An electrical synapse is a mechanical and electrically conduc-
ive link between two neighboring neurons that is formed at a
ap junction, shown in Fig. 1. Formed by gap junction channels
etween neurons, electrical synapses allow direct transmission
f voltage signals between coupled cells (Curti & O’Brien, 2016).
uch electrical coupling of neurons receives much attention in
ecent neuroscience research. It is proved to be responsible for
variety of network effects particularly in networks that gener-
te rhythmic activity such as regulation of phase relationships,
ynchrony, and pattern formation (Nadim, Li, Gray, & Golowasch,
017). It has been revealed that the electrical coupling promotes
ction potential generation and synchronous firing, and electri-
ally coupled interneurons exhibit strong synchronous synaptic
ctivity (Yao et al., 2016).
The electrical synapse is also essential for visual sense, which

as been investigated in neuroscience researches (Boron & Boul-
aep, 2016a, 2016b, 2016c). The retina neurons receive optical
timuli in a matrix, and through some levels of neural popula-
ions, signals are projected to the primary visual cortex point-to-
oint. In such nerve routes, both chemical and electrical synapses

xist universally and play crucial parts in visual signal processing.

185
Fig. 1. Biological evidence for electrical coupling. (A) Electron micrograph
showing a neuronal gap junction (arrow) between two dendritic profiles in the
cat inferior olive, which were located in an extraglomerular position. Modified
from Sotelo et al. 1974. (B) Diagram of inter-neuron gap junction where electrical
coupling takes place. (C) Experimental design for study electrophysiological
properties of electrical synapses. (D) When a hyperpolarizing current pulse is
injected to cell 1 (I Cell 1) a voltage deflection is produced in that cell (V1) and
also in cell 2 (V2), although voltage change in the latter is of smaller amplitude.
Traces are representative drawings. Modified from Curti and O’Brien (2016).

Especially, chemical synapses exchange information between dif-
ferent levels of populations; electrical synapses, forming among
somas very close to one another and exchange information lo-
cally via gap junctions, which is responsible for a variety of
effects including action potential generation and synchronous
firing (Bennett, 2000; Pereda, 2014).

In this work, we try to build an Electrical Coupling LIF (ECLIF)
model and correspond to deep neural networks, wherein the
densely allocated neurons communicate with each other via
both chemical synapses and electrical synapses. For the electrical
synapse, the electrical coupling effect is modeled that the mem-
brane potentials of one neuron will take effect on the membrane
potentials of its neighbor neurons.

The main contribution of this paper is two folds:
(1) We bring in the bio-plausible electrical synapse to learn-

able LIF, and a newly revised LIF model called ECLIF is proposed.
Since the traditional EC model is established in neural dynamic
equations and defined for an independent neuron, we found out
that convolution operation can be applied to simplify represent-
ing the electrical coupling effect for a group of neurons in the
tensor shape. Such a model obeys the original biological dynamic
expression, whereas is more friendly for deep neural network
construction and training. Hence the coupling weights now can
be learned via the BPTT algorithm.

(2) We enhance existing deep ANNs with ECLIF, and a deep
neural network named ECLIF-Net is built with such ECLIF lay-
ers for spatio-temporal processing. For enhancing the network
accuracy, we applied several key features including analog ac-
tion potential, neural homeostasis (via batch normalization), and
pooling to ECLIF-Net, for achieving a better network accuracy on
realistic tasks. For revealing the efficiency of EC, we conducted
five experiments with the proposed ECLIF-Net, which shows ob-
vious performance gain is achieved on the mainstream datasets.
We also compared the computational efficiency of the proposed
model with the traditional LIF model, 3D convolutional model,
and ConvLSTM model which reveals the computational efficiency
of ECLIF-Net.

The paper is organized as follows. In Section 2, the model
description of the proposed ECLIF is introduced. In Section 3,
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e evaluated the performance of ECLIF-Net with datasets and
ompared it with other traditional networks. The experiment
roved that ECLIF has excellent spatio-temporal processing capa-
ilities. The computational complexity is analyzed for each task,
hich also reveals the efficiency of ECLIF-Net. Finally, Section 4
oncludes the paper.

. Model description

.1. Traditional LIF

The original LIF model is described in a differential func-
ion (Ferré, Mamalet, & Thorpe, 2018; Roy, Jaiswal, & Panda, 2019)
o reveal the neuronal dynamic, following equation
dVj(t)
dt
= −(Vj(t)− Vrest )+ RIj(t). (1)

where τ is the timing factor of the neuron, j represents the
current neuron, Vrest is the rest potential. When Vj(t) reaches a
certain threshold Vth, a spike is emitted, and the Vj(t) is reset to its
initial value Vreset . R is the resistance. Ij(t) is the injected current,
which can be described by Ij(t) =

∑n
i=1 Wi,j · Xi(t), Xi(t) is the

input signal (spike or none) from the ith neuron connecting to
the dendrite of current neuron through a synapse with strength
Wi,j.

2.2. Electrical coupling LIF

We introduce the electrical coupling effect illustrated by
Nadim et al. (2017) to the LIF model. The effect is observed in
vivo that the action potential originates in a neuron cell and prop-
agates through the electrically coupled neurons. The coupling is
obliged for the voltage change and the new action potentials in
the coupled neighboring cells.

We define N{j} as the set of densely allocated neighbor neu-
rons to neuron j, indexed by k ∈ N{j} (excluding neuron j itself),
their membrane potentials denoted by Vk(t), and the membrane
potential impact they have taken on the current neuron j is re-
lated by weights W R

k,j and membrane potential difference Vk(t)−
Vj(t) (Ferré et al., 2015). After electrical coupling is introduced,
Eq. (1) is refined as

τ
dVj(t)
dt
=− (Vj(t)− Vrest )+∑

k∈N{j}

W R
k,j · (Vk(t)− Vj(t))+ RIj(t)

(2)

For maintaining the spatial invariance, we use a convolution
operation to better represent the coupling effect, following

Convj(Vk(t),W R
k,j) =

∑
k∈N{j}

W R
k,j · (Vk(t)− Vj(t)) (3)

2.3. Detail derivation of the discrete form of ECLIF

Since the BPTT training needs a discrete-time iterative repre-
sentation of ECLIF, we introduce Euler method (Neftci, Mostafa, &
Zenke, 2019; Wu et al., 2018) to obtain it.

From Eq. (2), we define ∆t as the sampling duration which is
a small fraction of time, with the Euler method the equation can
be solved numerically

Vj(t +∆t) =Vj(t)+
∆t
τ

(
−Vj(t)+ Vrest + RIj(t)

)
+

∆t
τ

⎛⎝ ∑
W R

k,j ·
(
Vk(t)− Vj(t)

)⎞⎠ (4)
k∈N{j}

186
After sampling with sampling rate 1/∆t , and we denote the
time step as n, and t = n∆t then we have

Vj((n+ 1)∆t) =Vj(n∆t)(1−
∆t
τ

)+

∆t
τ

Vrest+

∆t
τ

RIj(n∆t)+

∆t
τ

∑
k∈N{j}

W R
k,j ·

(
Vk(n∆t)− Vj(n∆t)

)
(5)

For simplicity, we further define α = 1 − ∆t
τ
, β = ∆t

τ
Vrest ,

= R∆t
τ
, W r

k,j =
∆t
τ
W R

k,j, then Eq. (5) can be written as

Vj((n+ 1)∆t) =αVj(n∆t)+ β + rIj(n∆t)+∑
k∈N{j}

W r
k,j ·

(
Vk(n∆t)− Vj(n∆t)

) (6)

In the discrete form, we skip the notation ∆t , therefore
n+1
j = αV n

j + β + rInj +
∑
k∈N{j}

W r
k,j · (V

n
k − V n

j ) (7)

we further define
n
Lj = αV n

j + β (8)

n
ECj = V n

Lj +
∑
k∈N{j}

W r
k,j · (V

n
Lk − V n

Lj) (9)

n
Ij = V n

ECj + rInj (10)

From Eq. (9) we have
n
ECj =(1−

∑
k∈N{j}

W r
k,j)V

n
Lj +

∑
k∈N{j}

W r
k,j · V

n
Lk

=W r
j,jV

n
Lj +

∑
k∈N{j}

W r
k,j · V

n
Lk

=

∑
k∈N{j},j

W r
k,j · V

n
Lk

(11)

here W r
j,j = 1−

∑
k∈N{j}W

r
k,j is defined.

For maintaining the spatial invariance, the weight only relates
o the spatial location relationship between these two neurons,
nd only the adjacent neurons (within the coupling window for
euron j) are considered, therefore we can use a convolutional
ernel to simplify Eq. (11), following
n
ECj =

∑
k∈{N{j},j}

W r
k,j · V

n
Lk

=Convj(V n
Lk,W

r
k,j)

(12)

In the next section, We will use corresponding vector (or
ensor) representations, i.e. V n

L , V
n
EC and V n

I , to denote group of
eurons, then V n

EC = Conv(V n
L ,W

r ).
Note that the Convj here is slightly different to Eq. (3). For a

ompatible version to Eq. (3), we can defineW r ′
j,j = −

∑
k∈N{j}W

r
k,j,

then Eq. (11) can also be rewritten by V n
ECj = V n

Lj+Convj(V n
Lk,W

r ′
k,j).

2.4. Electrical coupling LIF for 1D signal processing

Form the deviation in Section 2.3, the discrete ECLIF model
can be described in an iterative process consisting of 5 steps as
follows. Here, we define the input and output signal in each time
step as a 1D vector signal, and the number of ECLIF neurons is L.
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Fig. 2. Proposed biological inspired ECLIF model. (A) Proposed 1D ECLIF, wherein
the membrane potential of a yellow color neuron is impacted by the neurons
in gray, modeled by 1D convolution. (B) Proposed 2D ECLIF, wherein the nearby
K · K · FM neurons (FM is the feature maps) will influence the membrane
otential of the current neuron, modeled by 2D convolution. (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

(a) Perform leakage
n
L = α · V n

+ β (13)

here α and β represent the multiplicative decay and additive
decay respectively.

(b) Perform electrical coupling on inter-neurons for ECLIF

V n
EC = Conv1D(V n

L ,W
r ) (14)

here the Conv1D is 1D Convolution with kernel size 1× K . We
ame W r as coupling kernel, which is learnable. For traditional
IF, we have V n

EC = V n
L .

(c) Accumulates with previous membrane potential
n
I = rIn + V n

EC (15)

here V n
EC and V n

I refer to the previous and current membrane
otential respectively.
(d) Compare with the threshold and fire

n
= V n

I ≥ V th (16)

here F n is the fire signal. For each F n
j in F n, F n

j = 1 indicates a
iring event, otherwise F n

j = 0.
(e) Reset the membrane potential when fired

V n+1
= F n

· V reset + (1− F n) · V n
I (17)

.5. ConvECLIF2D for spatio-temporal processing

For spatio-temporal processing, where the input is a sequence
f frames, and the spatial domain is 2D images, therefore the 1D
CLIF model proposed above needs to be evolved to 2D format.
Firstly, the synaptic integration for Ij(n) is described by 2D

onvolution, following
n
= Conv2D(Xn,W ) (18)

here Xn stands for the activations from the presynaptic neu-
ons, W refers to the chemical synaptic weights. The synaptic
ntegration can exist in a fully connected format or convolutional
ormat. Both Xn and In are 3-dimensional tensors, e.g. Xn has the
hape of (H,W , FMin), and In has the shape of (H,W , FM) where
and W represent the height and width of the feature maps,

Min is the number of input feature maps. FM is the number of
eature maps of output activations. Accordingly the membrane
otential V n

I , firing signal F n, Electrical Coupling (EC) effect V n
EC

re all 3D tensors with shape (H,W , FMin). The electrical coupling
ffect described in (14) is substituted by
n
= Conv2D(V n,W r ) (19)
EC L

187
here the Conv2D is 2D Convolution with a coupling kernel size
of K × K .

The ECLIF1D and ECLIF2D are depicted and compared in Fig. 2.

2.6. ECLIF with analog activation

Borrowed the ideas from Wu et al. (2021), an alternative
model of ECLIF by extending spiking to an arbitrary activation
function is proposed. Instead of output F n to succeeding layer,
this model output Y n defined as an activation function of mem-
brane potential V n

I , following
n
= f (V n

I ,V th) (20)

here f (x, Vth) is the activation function. It can be any threshold-
related function or threshold unrelated function, and the output
can be in analog or spiking format. We term this model as
ECLIF with Activation function (ECLIF-A) model. Traditional spik-
ing ECLIF (termed as ECLIF-S) can be viewed as a special case of
ECLIF-A, where f (x, Vth) = x ≥ Vth?1 : 0.

In conclusion, Alg. 1 summarizes the ECLIF execution flow
in pseudo-code. It is worth noting that there are several sub-
types of ECLIF, listed in Table 1. In the table, ‘‘Direct-’’ indicates
that no synaptic integration is performed, i.e. In = Xn; ‘‘FC-’’
means a fully connected layer is used for synaptic integration,
i.e. In = FullyConnected(Xn,W ). For saving parameters, we apply
sharing mechanism for V th, V reset , α and β. The units for each
of them may vary for each FM (the neurons within an FM share
a unique value), or the same for all neurons. We termed these
modes as Channel-Sharing (‘‘-CS’’) mode, and All-Sharing (‘‘-AS’’)
mode, respectively. We use Non-Sharing (‘‘-NS’’) to represent that
there is no sharing on parameters. As a result, there are many
combinations of these sub-types, and we can denote each model
configuration as a ‘‘prefix-model-suffix’’ notation. For example
‘‘ConvECLIF2D-S’’ means an electrical coupling LIF model with
2D convolutional synaptic integration and outputs with spiking
format.

Algorithm 1 Pseudo code for one time step (n) of ECLIF.
Input: Synaptic integration current In
utput: Y n

n
L ← α · V n

+ β
n
EC ← Conv(V n

L ,W
r )

n
I ← rIn + V n

EC
n
← V n

I ≥ V th
n
← f (V n

I ,V th)
n+1
← F n

· V reset + (1− F n) · V n
I

2.7. Biological similarities

The biological evidence of electrical synapse is shown in Fig. 1.
Different from biological coupling strength which varies for all
pairs of neurons, in our model, the synaptic weights W r are
shared for all the neurons due to convolution. Such sharing en-
ables the in-variance of position and reduces the number of
overall parameters, which is widely applied in deep neural net-
works.

2.8. Computational point of view

The membrane potential is in high accuracy and contains ad-
ditional information than the threshold-controlled firing signals.
By introducing the convolution operation, additional computa-
tion and storage are applied for enhancing information exchange
capability between neurons. It can be viewed as a balance of
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Table 1
Configurations for ECLIF model family.
Signal type (shape) EC Synaptic integration Activation Parameter sharing

With EC Without EC Direct Dense Conv1D Conv2D Spiking Act. fun. None Channel All

1D signal [T , L] ECLIF1D LIF1D Direct- FC- Conv- / -S -A -NS -CS -AS
2D signal [T ,H,W , FM] ECLIF2D LIF2D Direct- / / Conv- -S -A -NS -CS -AS
Fig. 3. Modeling neurons as an ANN layer. A neuronal cell consists of the synapse, dendrite, soma, and axon, where synapses can be categorized into electrical and
hemical. SNN defines the network projection as a group of synaptic connections and the neural population as a group of cells (each cell includes dendrite, soma, and
xon). Previous works revealed that LIF can be used to enhance ANN by replacing the activation function (for temporal free ANN models) and recurrent neural cells
for temporal or spatio-temporal ANN models) with SNN cell models (Deng et al., 2020; Wu et al., 2021), but neglecting electrical synapses, which are as universal
nd crucial as chemical synapses in information exchange and processing. Our work fixes such defects.
omputational cost and recognition accuracy. Although it re-
uires more computations and weight storage, it still shows bet-
er computational efficiency than traditional ANNs (Conv3D or
onvLSTM), which will be discussed in Section 3.

.9. Plasticity and learning

Regarding plasticity, there are at least three categories of
echanisms for changing the strength of electrical coupling be-

ween two neurons (O’brien, 2014) in biological nervous systems:
1) by altering membrane properties of the communicating cells,
2) by changing the conductance of the gap junction, and 3) by
hanging the expression level gap junction proteins. In our sim-
lified model, like most simplified neural models, the details of
embrane properties and proteins are not included. The strength
f electrical coupling between two neurons is modeled simply
y a single value represented as one of the weight parameter
r . Therefore we mainly focus on adjusting the synaptic weights,
hich are equivalents to an integrated effect of the three cat-
gories of plasticity mentioned above. The weights are learned
ia BPTT in a supervised manner. Training ECLIF is similar to the
raining of RNN and LIF. The training of LIF-SNN with BPTT with
radient approximation is well discussed in literature (Hong, Wei,
ang, Deng, Yu, & Che, 2019; Lee, Delbruck, & Pfeiffer, 2016;
eftci et al., 2019; Pineda, 1987). The additional EC operation
convolution operation) to LIF-SNN is also differentiable.

.10. Deep neural network with ECLIF

In this section, we compare ECLIF with typical deep neural
etwork (DNN) layers and explain the way for integrating ECLIF

nto the DNN training framework.

188
As for neuroscience, biological brains are described as Spik-
ing Neural Networks (SNNs), where neurons are sparsely con-
nected and activated, and information is carried in binary spiking
trains (Ghosh-Dastidar & Adeli, 2009; Schliebs & Kasabov, 2013).
As shown in Fig. 3, the synapses in the ECLIF cell model can be
treated as the ANN connection weights in the fully connected
layers of convolution layers, and the soma in ECLIF can be roughly
equivalent to the ANN recurrent cell updates and activation.
Hence it is admissible to replace ANN activation functions with
ECLIF soma for a temporal-free case. For temporal or spatio-
temporal cases, The soma neural dynamics are similar to the
recurrent updates held by the ‘‘cell’’ in the recurrent ANN models,
such as Recurrent Neural Networks (RNN). Building deep neural
networks with ECLIF is as easy as building networks with RNN
layers or traditional activation layers.

We further build DNN with ECLIF as the basic building block
called ECLIF-Net. In such a network, we use the phrase ‘‘ECLIF
layer’’ instead of ‘‘ECLIF model’’. In ECLIF-Net, multiple ECLIF
layers may exist. Besides, the DNN layers such as batch nor-
malization, pooling, and fully connected perceptron layers are
introduced for the network construction, as we will illustrate in
our experiment. The ECLIF-Net can be trained end-to-end with
BPTT, and we trained our models with either Tensorflow or
Pytorch.

3. Spatio-temporal tasks with ECLIF-net

In this section, we evaluate the performance of ECLIF-Net on
several spatio-temporal tasks including two 1D signal process-

ing tasks and three event-driven spatio-temporal tasks. These
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Table 2
Performance comparison of temporal models on BABI QA tasks.
Temporal Layer RNN LSTM GRU FCLIF1D-S FCECLIF1D-S FCECLIF1D-A

Avg acc. 54.24% 56.98% 56.93% 49.73% 51.98% 53.93%
Table 3
Efficiency and cost comparison for the candidate temporal models on BABI
dataset.
Layer Test ADDs MULs Weights

LIF 49.73% 0.4M 7.7K 5.5K
ECLIF-S (3) 51.98% 0.4M 31K 5.5K
ECLIF-A (3) 53.93% 0.4M 0.4M 5.5K
RNN 54.24% 1.2M 1.2M 15K
GRU 56.93% 3.5M 3.5M 45K
LSTM 56.98% 4.6M 4.6M 60K

Fig. 4. The network structure designed for the bAbI QA task. One of
RNN/LSTM/GRU/LIF/ECLIF is selected as the temporal layer.

experiments cover many areas such as Natural Language Pro-
cessing (NLP), speech recognition, gesture recognition, moving
object classification, and large-scale image classification, which
fully demonstrate the spatio-temporal processing capabilities of
ECLIF-Net.

3.1. Simple natural language processing with ECLIF

We first tested ECLIF-Net and traditional temporal models on
a Question Answering (QA) task on bAbI QA dataset (Weston
et al., 2015). bAbI QA contains 20 subtasks, each of which is
a group of QA, and each QA contains a statement, a question,
and a label (answer). In this work, we used a unified network
framework for all temporal models, shown in Fig. 4. The tem-
poral layer is selected from one of GRU (Cho, van Merrienboer,
Gülçehre, Bougares, Schwenk, & Bengio, 2014)/LSTM (Hochreiter
& Schmidhuber, 1997)/RNN (Mikolov, Karafiát, Burget, Černockỳ,
Khudanpur, 2010)/FCLIF1D (Abbott, 1999)/FCECLIF1D. We need

o first encode the states and questions into a one-hot vector
ith a dimension of 50 and then fed them into the network. The
ectors output by the temporal layer are concatenated and then
end to a fully connected layer. For comparison fairly, we applied
he same parameters (e.g. cell numbers) for all the temporal layer
lternatives. We set the coupling kernel size of 1x3. The results
re shown in Table 2.
It can be revealed from the table that the accuracy of ECLIF-S

nd ECLIF-A are better than LIF by 2.25% and 4.20% respectively.
his also illustrates the importance of the electrical coupling
ffect in neuronal information interaction. The performance of
CLIF-S is not comparable with LSTM and GRU currently whereas
CLIF-A reaches similar performance to GRU and LSTM. It is no-
iceable that ECLIF is a lightweight structure that consumes much
ess computation and the number of weights compared to them,
evealed in Table 3. It can be seen that the parameter amount of
CLIF-A is 63.33% less than that of RNN, and the performance is
imilar. Compared with LSTM/GRU, it consumes 90.83% / 87.78%
ess weight parameters respectively. Besides, the computational
ost of ECLIF-A is 88.57% less than that of the GRU layer and
1.30% than the LSTM layer.
189
3.2. Speech recognition on spiking heidelberg digits

3.2.1. Dataset and data pre-processing
Spiking Heidelberg Digits (SHD) (Cramer, Stradmann, Schem-

mel, & Zenke, 2020) is the first event-driven dataset for speech
classification. They are inspired by neuro-physiology and made
by converting general audio into spike sequences. It contains 10K
high-quality digital recordings of English and German voices of
number 0 to 9, resulting in a 20-classification task. Each sample
in this dataset is an event stream and each event is represented
by a [time stamp, spike location] pair, where the spike location
ranges from 0 to 699. In order to facilitate input into the network,
we use continuous 600 ms spike events to generate 10-time steps
of spike data in each voice sample. Finally, the data format of the
input network is [Batchsize, 10, 700], and Batchsize = 100.

3.2.2. Network structure
The network structure is shown in Fig. 6. We only use three

temporal layers, a linear layer and a Temporal Aggregation Layer
(TAL). TAL is applied for integrating temporal information. In
order to perform a comparative evaluation, we used FCLIF1D and
FCECLIF1D for the temporal layer. According to the format of
the dataset after processing, we use FCECLIF1D with a coupling
range of 3 (coupling kernel 1x3). CrossEntropy is chosen as the
loss function. The network is trained for 100 epochs. The initial
learning rate is 0.03, and the learning rate decays to 1/10 at epoch
50 and epoch 80.

3.2.3. Performance analysis
We conducted experiments with varieties of LIF neuron mod-

els under the same network structure on this dataset. It can be
revealed from Fig. 5 that whether the activation format is spike
or analog, the electrical coupling effect takes an obvious effect
on accuracy, improved by 11.91% and 8.41% respectively. As a
result, the test accuracy of ECLIF-A and ECLIF-S reach up to 91.82%
and 90.50% respectively, which are both higher than the existing
state-of-the-art work, shown in Table 4.

3.3. Dynamic gesture recognition on DVS128 GESTURE dataset

3.3.1. Dataset and preparation
The DVS128 Gesture (Amir et al., 2017) dataset is recorded by

a Dynamic vision sensor (DVS). For DVS, only the intensity change
is recorded, which differs from traditional frame-based cameras
that are recorded at a fixed frame rate. The dataset includes a
set of 11 hand and arm postures with 1342 instances, and 29
subjects were collected under 3 different lighting conditions. Each
collection lasts about 6 s. The spike is represented by a quad
such as (x, y, ts, pol), where x and y are the spatial coordinates of
the spike, ts is the time-stamp of the event, and pol represents
the type of light intensity change (lighten to 1 or darken to
−1). We have collected events within 25 ms as a frame, and
a frame includes only two channels, which represent whether
the intensity is enhanced or weakened. The visualization of the
captured data is shown in Fig. 7. It is worth noting that there
are two classification options for this dataset, and we choose the

configuration of 11 classifications.
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Fig. 5. The test accuracy of the speech recognition experiment on Spiking
Heidelberg Digits, which shows the accuracy gain when introducing the electrical
coupling effect to LIF.

Fig. 6. The evaluation network for the SHD speech recognition task. We
performed four experiments with the temporal layer being configured as
FCLIF1D-S/FCLIF1D-A/FCECLIF1D-S/FCECLIF1D-A respectively.

Table 4
Speech recognition on SHD dataset.
Proposals Methods Acc.

Cramer et al. (2020) LIF RSNN 71.40%
Yin, Corradi, and Bohté (2020) RELU SRNN 88.93%
Zenke and Vogels (2021) SG-base SNN 84.00%
This work FCECLIF1D-S 90.50%
This work FCECLIF1D-A 91.82%

Table 5
Network structure for the DVS128 GESTURE recognition experiment.
Layer Out channel Kernel Use pool Pool size

ConvECLIF2D
64 (5,5) False
128 (3,3) True (2,2)
128 (3,3) True (2,2)

FCLIF1D 256 False
11 False

3.3.2. Network structure
The network structure is composed of three layers of EC neu-

ons and two FCLIF1D layers. The EC block mentioned here is de-
eloped based on ConvECLIF2D, which reflects the ability of neu-
ons to obtain spatio-temporal information. The network struc-
ure is shown in Table 5. To improve the accuracy of the network
uring the modeling process, we also borrowed some key features
f deep neural networks, including simulated action potentials,
eural homeostasis (through batch normalization), and pooling
s used to simulate the biological characteristics of neuronal cell
ynaptic structure.

.3.3. Network parameter settings
Several hyperparameters are set in this experiment. The time

indow is set to 60, (α, β) is assigned to (0.3, 0) respectively.
th is set to 0.5. The coupling kernel size can be set to 1x1, 3x3,
x5. We choose ReLU as the activation function and use Max
ooling to extract feature information in the EC block. We choose
190
Table 6
Accuracy of solutions for the DVS128 GESTURE dataset (11 classes).
Proposals Methods Act. Acc.

Massa, Marchisio,
Martina, and Shafique
(2020)

SNN converted from
CNN on Loihi

Spike 89.64%

Amir et al. (2017) CNN on TrueNorth Spike 94.59%

Kugele, Pfeil, Pfeiffer,
and Chicca (2020)

SNN converted from
ANN

Spike 95.56%

Wu et al. (2021) SNN(ConvLIF) Spike 94.10%

This work ConvECLIF2D-S Spike 97.22%
Khoei et al.,
SpArNet 2020 (Khoei
et al., 2020)

Converted CNN Analog 95.10%

Wang, Zhang, Yuan,
and Lu (2019)

PointNet++ Analog 95.32%

Bi (2020) Residual graph
CNN + Res.3D

Analog 97.20%

Wu et al. (2021) LIAF-Net(ConvLIAF) Analog 97.56%

This work ConvECLIF2D-A Analog 99.65%

CrossEntropyLoss as the loss function and trained the networks
via Adam optimizer with a learning rate of 10−3 and the weight
decay of 10−4.

3.3.4. Performance analysis
We evaluate the top 1 accuracy on the test set. The accuracy

of ECLIF-A-Net reaches 99.65%, and ECLIF-S-Net reaches 97.22%.
We compared this approach with related work on the same
dataset, and the accuracy results are listed in Table 6. It reveals
that the proposed method achieves the best accuracy. The ac-
curacy achieved by the analog value network has reached the
best accuracy, which illustrates the importance of both biological
electrical coupling effects and analog activation in neural network
transmission.

3.3.5. Efficiency analysis
This section investigates the performance against the power

consumption when adjusting the coupling kernel size. The results
are listed in Table 7. For the coupling kernel size, we have selected
three different configurations of 1x1, 3x3, and 5 × 5 representing
1/9/25 neurons in the spatial domain that have participated in
the EC convolution. The computational cost and the accuracy are
listed in Table 7. It can be observed that the best accuracy is
achieved when the coupling kernel size is 3 × 3. However, a bet-
ter trade-off of performance and computational cost is attained
when the coupling kernel size is set to 1× 1 (which indicates that
all the neurons that at the same spatial position but in different
feature maps are participated in the EC convolution), which is an
economical choice. Further increasing the coupling kernel size to
5 × 5 does not contribute to the performance gain. Besides, we
also conducted a performance investigation of the ECLIF 1 × 1
ernel size version with other network structures in Table 8.
his network can still be accurate and precise among various
tructures.

.4. Moving object classification on CIFAR10-DVS dataset

.4.1. Dataset and preparation
We conducted our experiment on another neuromorphic

ataset CIFAR10-DVS (Li, Liu, Ji, Li, & Shi, 2017) to verify the
enerality of ECLIF-NET. A sample in this event-based dataset is
ecorded by DVS as spatio-temporal spike train which contains
bundant temporal information. The spike train is represented by
quad such as (x, y, ts, pol). The CIFAR10-DVS dataset consists of
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a

Fig. 7. Since the original event data are extremely sparse, the events within 25 ms are collected into one frame, and each frame is divided into two channels, i.e. ON
nd OFF, according to the changes in intensity. The three different actions from top to bottom are (a) right hand counterclockwise (b) arm roll (c) left hand wave.
Fig. 8. Illustration of network structure used for CIFAR10-DVS dataset classification tasks.
Table 7
Comparison of different electrical coupling ranges.
Mode Coupling kernel Test acc. ADDs MULs Weights

Analog
0 (ConvLIF) 97.56% 6.2 G 6.2 G 0.22 M
1 × 1 99.31% 7.4 G 7.4 G 0.26 M
3 × 3 99.65% 18 G 18 G 0.55 M
5 × 5 97.57% 39 G 39 G 1.1 M

Spike
0 (ConvLIF) 94.10% 6.2 G 17 M 0.22 M
1 × 1 97.22% 7.4 G 1.3 G 0.26 M
3 × 3 97.22% 18 G 12 G 0.55 M
5 × 5 94.79% 39 G 33 G 1.1 M

Table 8
Comparison of power consumption calculations with other network structures.
Network Test acc ADDs MULs Weight

ConvLSTM 94.10% 87 G 87 G 2.5 M
RGCNN+Res3D (Bi, 2020) 97.20% – 14 G 12 M
SNN converted
from CNN (Massa et al.,
2020)

89.64% 0.44G 0.44G 0.35 M

ConvECLIF2D-S
(1× 1)

97.22% 7.4 G 1.3 G 0.26 M

ConvECLIF2D-A
(1× 1)

99.31% 7.4 G 7.4 G 0.26 M
191
Table 9
The network configuration for the CIFAR10-DVS classification experiment.
Layer Out FM Kernel Pool

ECLIF block

32 (3,3) (2,2)
64 (3,3) (2,2)
128 (3,3) (2,2)
256 (3,3) (2,2)
512 (3,3) (4,4)

Dense 512 – –
10 – –

6,000 examples in 10 classes, with 600 examples per class. For
data pre-processing, we treat every 5 ms spike train as a sepa-
rate event-frame and select 10 event-frames as a CIFAR10-DVS
sample, then a sample is derived in size [10, 128, 128, 2].

3.4.2. Network structure
We chose the network structure shown in Fig. 8 for the

CIFAR10-DVS classification task. The network consists of five
ECLIF blocks and two Dense blocks, each ECLIF-A block consists
of ConvECLIF2D-A, TD-layer-normalization, TD-ReLU, and TD-
AvgPooling, where TD refers to the time-distributed syntax in
Tensorflow Keras which copies the temporal-free operation (such
as ReLU) for all time steps; the Dense blocks consist of a dropout
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Table 10
Comparison with state-of-the-art results on CIFAR10-DVS.
Proposals Methods Acc.

Lagorce, Orchard, Galluppi, Shi, and Benosman (2017) HOTS 27.10%
Shi, Li, Wang, and Luo (2018) Lightweight Statistical 31.20%
Cannici, Ciccone, Romanoni, and Matteucci (2019) Attention Mechanisms 44.10%
Sironi, Brambilla, Bourdis, Lagorce, and Benosman (2018) HATS 52.40%
Wu, Deng, Li, Zhu, Xie, and Shi (2019) – 63.53%
Wu et al. (2021) LIAF-Net(ConvLIAF) 70.40%
This work ConvECLIF2D-S 67.37%
This work ConvECLIF2D-A 74.08%
Table 11
Performance and resource consumption comparison among spatio-temporal
models on CIFAR10-DVS.
Network Coupling kernel Test acc. ADDs MULs Weights

Conv2D 67.80% 3.8G 3.3G 1.5M

Conv3D 71.70% 10.0G 9.5G 4.7M

ConvLSTM 70.80% 43.0G 42.0G 18.0M

LIF-S 0 × 0 63.53% 3.8G 0.21G 1.5M

LIF-A 0 × 0 70.40% 3.8G 3.3G 1.5M

ECLIF-S 1 × 1 67.18% 3.9G 0.38G 1.8M
3 × 3 67.37% 5.4G 1.8G 4.6M

ECLIF-A 1 × 1 72.97% 4.6G 4.1G 1.8M
3 × 3 74.08% 11.0G 10.0G 4.6M

layer and a dense layer. The TAL is applied for integrating tempo-
ral information. More specifically, the TAL is obliged for summing
up the tensor of all time steps of the time dimension. The specific
parameter settings of the network are shown in Table 9. Variables
Vth, Vreset , α, β are all trained by BPTT and use Channel-Sharing
mode. For spike mode, because the data transferred between
layers are spike trains, we replaced the ECLIF-A blocks with the
blocks ECLIF-S consisting of TD-Conv2D, TD-layer-normalization,
TD-ReLU, TD-AvgPooling, and DirectECLIF2D-S.

3.4.3. Performance analysis
As shown in Table 10, we tested the proposed network and

other existing state-of-the-art networks on the CIFAR10-DVS
dataset. The accuracy of the network with ConvECLIF2D-A blocks
reaches 74.08%, and the network with ECLIF-S blocks reaches
67.37%. On the other hand, we separately tested the performance
and the costs of our proposed model and traditional spatio-
temporal networks built by time-distributed Conv2D, Conv3D,
and ConvLSTM on the CIFAR10-DVS dataset. They have the same
network structure, as shown in Fig. 8, and their parameters are
shown in Table 9. It can be seen from Table 11 that our proposed
ECLIF-A-Net achieves the highest accuracy among them. Besides,
we further verified the different coupling kernel sizes of ECLIF-
Net on the CIFAR10-DVS dataset. It shows that the network with
a 1 × 1 coupling kernel size still achieves satisfying performance
and better efficiency.

3.5. Large-scale image classification on ES-IMAGENET

3.5.1. Dataset
ES-Imagenet is currently the most challenging event-stream

dataset (Lin, Ding, Qiang, Deng, & Li, 2021). It is converted from
the popular computer vision dataset ILSVRC2012 (Deng, Dong,
Socher, Li, Li, & Fei-Fei, 2009). It generates about 1.3 million
frames of images, divided into 1000 categories, including 1257K
training and 50K test samples. It is currently the largest ES-
dataset for object classification, which is dozens of times larger
than other neuromorphic datasets. The brightness information is

firstly obtained by converting the RGB (Red–Green–Blue) color

192
Fig. 9. The SNN neuron replaces the activation function in the ResNet block.
The two methods do not perform convolution operations when receiving the
pulse input of the previous layer.

Table 12
Verify model validity on ES-IMAGENET.
Backbone Layer Test acc. Parameters

ResNet-18
Conv2D 41.03% 11.68M
ConvLIF2D-S 39.89% 11.69M
ConvLIF2D-A 42.54% 11.69M
ConvECLIF2D-A 44.25% 17.99M

space to the HSV (Hue-Saturation-Value), and then an event-
stream is generated by the Omnidirectional Discrete Gradient
(ODG) algorithm. This algorithm is to imitate the neuron cells
with biological characteristics to obtain the necessary informa-
tion for object recognition. Finally, the events are accumulated
through the time axis, and 8 event frames are generated. The size
of an event frame is 224 × 224. The frame contains two channels,
indicating the event polarity of each coordinate position. The
converted dataset has the characteristics of rich spatio-temporal
information in the pulse event stream. It can well verify the
model’s spatio-temporal information extraction ability.

3.5.2. Network structure
Due to the relatively large scale of this dataset, we used

a deep neural network. The experiment uses a ResNet-18 (He,
Zhang, Ren, & Sun, 2016) as the network topology. Three different
networks are designed and compared as shown in Fig. 9. The
first is a traditional 2D CNN. We compress and reconstruct the
4D event-data in ES-imagenet into a 2D grayscale image, and
then obtain the classification via the 2D CNN. The second net-
work is obtained by replacing the activation with DirectLIF2D-S
and DirectLIF2D-A in two experiments respectively and replacing
the Batchnorm layer with tdBN (Zheng, Wu, Deng, Hu, & Li,
2020). The third network is obtained by replacing DirectLIF2D
with DirectECLIF2D-A. The LIF-Net and ECLIF-Net also include the
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Table 13
Performance comparison of temporal layers on BABI QA tasks.

RNN LSTM GRU LIF ECLIF-S ECLIF-A

last best last best

QA1-Single Supporting Fact 47.80% 46.80% 49.00% 52.70% 47.60% 52.70% 49.40% 52.70%
QA2-Two Supporting Facts 27.50% 33.60% 29.40% 27.50% 19.00% 19.00% 19.00% 29.90%
QA3-Three Supporting Facts 22.40% 22.80% 27.40% 20.20% 22.00% 22.30% 19.40% 21.80%
QA4-Two Arg. Relations 71.30% 70.50% 52.90% 31.10% 70.30% 70.30% 72.40% 73.50%
QA5-Tree Arg. Relations 39.30% 73.50% 73.00% 32.20% 33.60% 55.70% 33.10% 55.40%
QA6-Yes/No Questions 49.50% 50.80% 51.20% 52.60% 48.70% 52.90% 47.70% 52.00%
QA7-Counting 79.30% 79.00% 76.40% 48.80% 75.70% 78.80% 77.80% 78.00%
QA8-Lists/Sets 53.80% 75.70% 73.40% 33.60% 33.60% 33.60% 68.70% 69.50%
QA9-Simple Negation 61.00% 63.80% 62.40% 61.20% 59.00% 62.20% 59.50% 64.30%
QA10-Indefinite Knowledge 45.10% 46.80% 46.70% 46.40% 47.40% 48.00% 45.80% 48.00%
QA11-Basic Coreference 69.70% 65.50% 67.10% 75.10% 71.20% 75.10% 71.50% 75.10%
QA12-Conjunction 64.80% 64.50% 62.70% 77.20% 72.50% 77.20% 70.20% 77.20%
QA13-Compound Coreference 93.60% 92.00% 91.40% 94.40% 93.50% 94.40% 91.30% 94.40%
QA14-Time Reasoning 27.40% 38.40% 39.70% 29.10% 27.80% 30.30% 30.70% 31.60%
QA15-Basic Deduction 45.30% 24.30% 45.90% 25.70% 25.70% 28.20% 28.50% 29.50%
QA16-Basic Induction 44.90% 46.70% 44.40% 45.40% 45.80% 47.60% 47.30% 50.00%
QA17-Positional Reasoning 48.00% 48.00% 48.80% 49.60% 48.70% 52.10% 50.90% 54.00%
QA18-Size Reasoning 90.40% 90.30% 91.20% 90.60% 92.60% 92.60% 91.00% 92.10%
QA19-Path Finding 10.20% 9.60% 8.80% 8.60% 9.90% 9.90% 9.90% 11.30%
QA20-Agent’s Motivations 93.40% 97.10% 96.70% 92.60% 95.00% 95.20% 94.40% 95.40%
Average performance on all tasks 54.24% 56.98% 56.93% 49.73% 51.98% 54.56% 53.93% 57.79%
B

replacement of the down-sampling convolution of the first layer.
The network topology and hyper-parameter settings of the three
experiments remain the same. Totally 25 epochs were used for
training, with a learning rate of 0.03 and a batch size of 150. The
network is trained end-to-end with no data argumentation held
on the input frame and no pre-training is involved.

3.5.3. Performance analysis
On this dataset, we are mainly to verify the effectiveness of

C neurons in more complex and high interference situations. As
hown in Table 12, it can be seen that under the experimental
omparison of the backbone network and the same parameters,
he original LIF-Net is underperformed to 2D-CNN, however, after
ntroducing EC and analog activation, the modified ECLIF-Net has
eached the highest accuracy of 44.25%.

. Conclusion

In this work, we modeled the electrical synapses among the
ensely located neurons and proposed an improved neural model
CLIF. In this model, the coupling effect is modeled as convo-
utional operations on the membrane potential among neurons.
ith the electrical coupling modeled in convolutions, our ECLIF

ntegrates the typical inter-layer communication via chemical
ynapses, as well as intra-layer communication directly in local
ia electrical synapses. We built ECLIF-NET based on the ECLIF
odel and trained by BPTT end-to-end. The ECLIF-Net achieved
bvious accuracy gain on several datasets over the traditional LIF
odel. In addition, the accuracy gain is received under limited
omputational cost when using a smaller coupling kernel size.
CLIF is a representative model inspired by neuroscience dis-
overy and contributes to real task performance. It may provide
ew insight on the future brain-inspired neural model design and
pplication.
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Appendix. bAbI QA subtask scores

The bAbI QA dataset contains 20 individual sub-tasks. Here we
listed the detailed bAbI QA validation accuracy for each sub-task
in Table 13. The 20 sub-tasks are independent, and we calculated
the average accuracy to represent the overall performance. From
the table, it is revealed that ECLIF-S with the best accuracy is still
weaker than LSTM and GRU. Compared with ECLIF-A, the binary
activations in ECLIF-S may cause loss of information. Further
study also reveals that tasks have their characteristics. For some
simple reasoning logic tasks (QA11/QA12), ECLIF performs better.
For complex relational reasoning tasks (QA8/QA14), LSTM/GRU
performs better than LIF/ECLIF-S.
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