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Neuroscience is at the stage biology was at before Darwin. It 
has a myriad of detailed observations but no single theory 
explaining the connections between all of those observa-

tions. We do not even know if such a brain theory should be at 
the molecular level or at the level of brain regions, or at any scale 
between. However, looking at deep neural networks, which have 
achieved remarkable results in tasks ranging from cancer detec-
tion to self-driving cars, may provide useful insights. Although such 
networks may have different inputs and architectures, most of their 
impressive behaviour can be understood in terms of the underlying 
common learning algorithm, called backpropagation1.

A better understanding of the learning algorithm(s) used by 
the brain could thus be central to developing a unifying theory of 
brain function. There are two main approaches to investigating 
learning mechanisms in the brain: (1) experimental, where persis-
tent changes in neuronal activity are induced by a specific inter-
vention2, and (2) computational, where algorithms are developed 
to achieve specific computational objectives while still satisfying 
selected biological constraints3,4. In this Article we explore an addi-
tional option—(3) theoretical derivation—where a learning rule is 
derived from basic cellular principles, that is, from maximizing the 
metabolic energy of a cell. Using this approach, we found that maxi-
mizing the energy balance by a neuron leads to a predictive learning 
rule, where a neuron adjusts its synaptic weights to minimize sur-
prise—that is, the difference between actual and predicted activity. 
Interestingly, this derived learning rule has a direct relation to some 
of the most promising biologically inspired learning algorithms, like 
predictive coding and temporal difference learning (see below), and 
Hebbian-based rules can be seen as a special case of our predic-
tive learning rule (Discussion). Thus, our approach may provide a 
theoretical connection between multiple brain-inspired algorithms 
and may offer a step towards the development of a unified theory of 
neuronal learning.

There are multiple lines of evidence suggesting that the brain 
operates as a predictive system5–10. However, it remains controver-
sial as to how exactly predictive coding could be implemented in the 
brain4. Most of the proposed mechanisms involve specially designed 
neuronal circuits with ‘error units’ to allow for comparing expected 

and actual activity11–14. Those models assume a predictive circuit, 
but we propose an alternative, where there is an internal predictive 
model within a neuron. As many basic properties of neurons are 
highly conserved throughout evolution15–17, we suggest that a single 
neuron using a predictive learning rule could provide an elementary 
unit from which a variety of predictive brains may be built.

Interestingly, our predictive learning rule can also be obtained 
by modifying a temporal difference learning algorithm to be more 
biologically plausible. Temporal difference learning is one of the 
most promising ideas about how backpropagation-like algorithms 
could be implemented in the brain. It is based on using differences 
in neuronal activity to approximate top-down error signals4,18–24. 
A typical example of such algorithms is contrastive Hebbian 
learning25–27, which was proven to be equivalent to backpropaga-
tion under certain assumptions28. Contrastive Hebbian learning 
requires networks to have reciprocal connections between hid-
den and output layers, which allows activity to propagate in both 
directions (Fig. 1a). The learning consists of two separate phases. 
First, in the ‘free phase’, a sample stimulus is continuously pre-
sented to the input layer and the activity propagates through the 
network until the dynamics converge to an equilibrium (the activ-
ity of each neuron achieves a steady-state level). In the second 
‘clamped phase’, in addition to presenting a stimulus to the input, 
the output neurons are also held clamped at values representing 
the stimulus category (for example, 0 or 1), and the network is 
again allowed to converge to an equilibrium. For each neuron, 
the difference between activity in the clamped ( x̂) and free ( x̌) 
phases is used to modify the synaptic weights (w) according to 
the equation

Δwij = α(x̂ix̂j − x̌ix̌j), (1)

where i and j are indices of pre- and post-synaptic neurons respec-
tively, and α is a small number representing the learning rate. 
Intuitively, this can be seen as adjusting weights to push each neu-
ron’s activity in the free phase closer to the desired activity repre-
sented by the clamped phase. The obvious biological plausibility 
issue with this algorithm is that it requires the neuron to experience 
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exactly the same stimulus twice in two separate phases, and that the 
neuron needs to ‘remember’ its activity from the previous phase. 
Our predictive learning rule provides a solution to this problem by 
predicting the free-phase steady-state activity, thus eliminating the 
requirement for two separate stimulus presentations.

For clarity here, first we will describe how our predictive learning 
rule can be obtained by modifying the contrastive Hebbian learn-
ing algorithm. Next, we will validate the predictive learning rule in 
simulation and in data recorded from awake animals, and we will 
show how our results shed new light on the function of spontaneous 
activity. The details of derivation of the learning rule by maximizing 
the neuron energy balance will be presented at the end.

Results
Predictive learning rule and contrastive Hebbian learning. As 
mentioned earlier, the contrastive Hebbian learning algorithm 
requires a network to converge to steady-state equilibrium in two 
separate learning phases, so exactly the same stimulus has to be pre-
sented twice. However, this is unlikely to be the case in the actual 
brain. Here we propose to solve this problem by combining both 
activity phases into one, which is inspired by sensory processing 
in the cortex. For example, in visual areas, when presented with a 
new picture, there is initially bottom-up-driven activity contain-
ing mostly visual attributes of the stimulus (for example, contours). 
This is then followed by top-down modulation containing more 
abstract information, such as ‘this object is a member of category 
x’ or ‘this object is novel’ (Supplementary Fig. 1). Accordingly, our 
algorithm first runs only the initial part of the free phase, which 
represents bottom-up stimulus-driven activity, and then, after a few 
steps, the network output is clamped, corresponding to top-down 
modulation.

The novel insight here is that the initial bottom-up activity 
is enough to allow neurons to predict the steady-state part of the 
free-phase activity, and the mismatch between the predicted free 
phase and the clamped phase can then be used as a teaching signal. To 
implement this idea in our model, for each neuron, activity during 12 
initial time steps of the free phase ( x̌(1), ..., x̌(12)) was used to predict 
its steady-state activity at time step 120, x̌(120) (Fig. 1b). Specifically, 
we first presented sample stimuli in the free phase to train a linear 
model, such that x̌(120) ≈ x̃ = λ(1)x̌(1),+…+ λ(12)x̌(12) + b, where 
x̃ denote predicted activity, λ and b correspond to coefficients and 
offset term of the least-squares model, and terms in brackets cor-
respond to time steps. Next, a new set of stimuli was used for which 
the free phase was run only for the first 12 steps, and from step 13 
the network output was clamped (Fig. 1c). The above least-squares 
model was then applied to predict the free-phase steady-state activ-
ity for each neuron, and the weights were updated based on the dif-
ference between predicted and clamped activity (Methods). Thus, 

to modify the synaptic weights, in equation (1) we replace the activ-
ity in the free phase with predicted activity ( x̃):

Δwij = α(x̂ix̂j − x̃ix̃j). (2)

However, the problem is that this equation implies that a neu-
ron needs also to know the predicted activity of all its presynaptic 
neurons ( x̃i), which may not be realistic. To solve this problem, we 
replaced ( x̃i) by the actual presynaptic activity in the clamped phase 
( x̂i), which we validated in network simulations (see the next sec-
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Fig. 1 | Basics of the algorithm. a, Schematic of the network. Note that 
activity propagates back and forth between hidden and output layers.  
b, Sample neuron activity in the free phase in response to different stimuli 
(marked with shades of blue). The free-phase responses are used to 
train a linear model to predict a steady-state activity from the activity at 
earlier time steps (marked by the shaded area; see main text for details). 
The bottom traces show the duration of the inputs, and dots represent 
predicted activity. c, Activity of a neuron in response to a new stimulus 
with the network output clamped. Initially, the network receives only the 
input signal (free phase), but, after a few steps, the output signal is also 
presented (clamped phase, bottom black trace). The red dot represents 
the steady-state free-phase activity predicted from the initial activity (the 
shaded region). For comparison, the dashed line shows a neuron’s activity 
in the free phase if the output is not clamped. Synaptic weights (w) are 
adjusted in proportion to the difference between steady-state activity in 
the clamped phase ( x̂) and the predicted free-phase activity ( x̃).
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tion). This change leads to the following simplified synaptic plastic-
ity rule (equation (3)):

Δwij = α(x̂ix̂j − x̂ix̃j) = αx̂i(x̂j − x̃j). (3)

Thus, to modify the synaptic weights, a neuron only compares 
its actual activity ( x̂j) with its predicted activity ( x̃j), and applies this 
difference in proportion to each input contribution ( x̂i).

Learning rule validation in neural network simulations. To test if 
the predictive learning rule can be used to solve standard machine 
learning tasks, we created the following simulation. The neural net-
work had 784 input units, 1,000 hidden units and 10 output units, 
and it was trained on a handwritten digit recognition task (MNIST29; 
Supplementary Fig. 2 and Methods). This network achieved 1.9% 

error rate, which is similar to neural networks with comparable 
architecture trained with the backpropagation algorithm29. This 
demonstrates that the network with the predictive learning rule can 
solve challenging nonlinear classification tasks.

To verify that the neurons could correctly predict future 
free-phase activity, we took a closer look at sample neurons. Figure 
2a presents the activity of all ten output neurons in response to an 
image of a sample digit after the first epoch of training. During time 
steps 1–12, only the input signal was presented and the network was 
running in the free phase. At time step 13, the output neurons were 
clamped, with the activity of nine neurons set to 0 and the activity 
of one neuron, representing the correct image class, set to 1. For 
comparison, this figure also shows the activity of the same neu-
rons without clamped outputs (free phase). It illustrates that, after 
about 50 steps in the free phase, the network achieves a steady state, 
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Fig. 2 | Neuron prediction of expected activity. a, Activity of ten output neurons in response to a sample stimulus at the beginning of network training. 
The grey shaded area indicates the extent of the free phase (time steps 1–12). Solid red lines show activity of the neurons clamped at step 13. For 
comparison, dashed lines represent the free-phase activity if the output neurons had not been clamped. Dots show the predicted steady-state activity in 
the free phase based on initial activity (from steps 1–12). b, Activity of the same neurons after network training. Note that the free-phase and predicted 
activities converged to the desired clamped activity. c, Activity of a representative neuron in the hidden layer in response to five different stimuli after 
network training. Solid and dashed lines represent clamped and free phases, respectively, and dots show predicted activity. d, Predicted versus actual 
free-phase activity. For clarity, only every 10th hidden neuron out of 1,000 is shown, in response to 20 sample images. Different colours represent different 
neurons, but some neurons may share the same colour due to the limited number of colours. The distribution of points along the diagonal shows that the 
predictions are accurate. e, Decrease in error rate across training epochs. Yellow and green lines denote learning curves for the training and test datasets, 
respectively. Note that, in each epoch, we only used 2% of 60,000 training examples.
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Fig. 3 | Implementation of the predictive learning rule in a multilayer convolutional neuronal network. a, Depiction of our convolutional (Conv.) network 
architecture (Methods). b, Learning curve for the convolutional network trained using the predictive (Pred.) learning rule (green) and, for comparison, 
learning curves for the same network trained using BPTT. The red line shows a learning curve for BPTT using the same learning rates as in our predictive 
model (red line; LR: 0.4, 0.028, 0.025), BPTT with a learning rate of 0.1 for all layers (yellow line) and BPTT with a learning rate of 0.2 for all layers (violet 
line). This shows that, on CIFAR-10, the performance of the deep network using our predictive learning rule was comparable with that of BPTT.
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with predicted activity closely matching. When the network is fully 
trained, it still takes about 50 steps for the network dynamics in the 
free phase to converge to a steady state (Fig. 2b). Note that, although 
all units initially increase their activity at the beginning of the free 
phase, they later converge close to 0, except the one unit represent-
ing the correct category. Again, predictions made from the first 12 
steps during the free phase closely matched the actual steady-state 
activity. The hidden units also converged to a steady state after about 
50 steps. Figure 2c illustrates the response of one representative  
hidden neuron to five sample stimuli. Because hidden units expe-
rience the clamped signal only indirectly, through synapses from 

output neurons, their steady-state activity is not bound to converge 
only to 0 or 1, as in the case of output neurons. Actual and predicted 
steady-state activity for hidden neurons is presented in Fig. 2d. 
The average correlation coefficient between predicted and actual 
free-phase activity was R = 1 ± 0.0001 s.d. (averaged across 1,000 
hidden neurons in response to 200 randomly selected test images). 
Note that we always used a cross-validation approach, where we 
trained a predictive model for each neuron on a subset of the data 
and applied that model to new examples, which were then used for 
updating the weights (Methods). Thus, neurons were able to suc-
cessfully generalize their predictions to new unseen stimuli. The 
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earlier epoch (n = 7; Supplementary Information). Each dot represents one neuron. The regression line is shown in yellow. b, Average change in firing rate 
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stimulus-evoked and predicted activity during the first half of the experiment (Supplementary Information). Each dot represents the activity of one neuron 
averaged across stimuli. The similar behaviour of cortical and artificial neurons suggests that both may be using essentially the same learning rule. Thus, 
this evidence that a neuronal change in firing rate relates to ‘surprise’ provides a novel insight about neuronal plasticity.
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network error rates for the training and test datasets are shown in 
Fig. 2e. This demonstrates that the predictive learning rule worked 
well, and each neuron accurately predicted its future activity.

Biologically motivated network architectures. We also tested the 
predictive learning rule in multiple other network architectures, 
which were designed to reflect additional aspects of biological neu-
ronal networks. First, we introduced a constraint that 80% of the 
hidden neurons were excitatory and the remaining 20% had only 
inhibitory outputs. This follows observations that biological neu-
rons release either excitatory or inhibitory neurotransmitters, not 
both (Dale’s law30), and that ~80% of cortical neurons are excitatory. 
The network with this architecture achieved an error rate of 2.66% 
(Supplementary Fig. 3a). We also tested our algorithm in a network 
without symmetric weights, which resulted in a performance similar 
to the original network (1.96%, Supplementary Fig. 3b). Moreover, 
we implemented the predictive learning rule in a network with 
spiking neurons, which again achieved a similar error rate of 2.46% 
(Supplementary Fig. 4). Our predictive learning rule was further 
tested in a deep convolutional network (Fig. 3a), the architecture 
of which has been shown to resemble neuronal processing in the 
visual system31,32. Using this convolutional network, we tested our 
algorithm on a more challenging dataset for biologically inspired 
algorithms: CIFAR-1033. This dataset consists of colour images 
representing ten different classes (for example, aeroplanes, cars, 
birds and cats). We achieved an error rate of 20.03%, which was 
comparable with that achieved training the same network using a  

backpropagation through time (BPTT) algorithm (Fig. 3b; details are 
provided in the Methods and code to reproduce the results is avail-
able at https://github.com/ykubo82/bioCHL/tree/master/conv). 
Altogether, this shows that our predictive learning rule performs 
well in a variety of biologically motivated network architectures.

Predictive learning rule validation in awake animals. To test 
whether real neurons could also predict their future activity, we 
analysed neuronal recordings from the auditory cortex in awake 
rats (Methods). As stimuli we presented six tones, each 1 s long 
and interspersed by 1 s of silence, repeated continuously for over 
20 min. (Supplementary Information). For each of the six tones we 
separately calculated the average onset and offset response, giving 
us 12 different activity profiles for each neuron (Fig. 4a). For each 
stimulus, the activity in the 15–25 ms time window was used to pre-
dict average future activity within the 30–40 ms window. We used 
12-fold cross-validation, whereby responses from 11 stimuli were 
used to train the least-squares model, which was then applied to 
predict neuron activity for the one remaining stimulus. This proce-
dure was repeated 12 times for each neuron. The average correlation 
coefficient between actual and predicted activity was R = 0.36 ± 0.05 
s.e.m. (averaged across 55 cells from four animals; Fig. 4b). The 
distributions of correlation coefficients for individual neurons 
were significantly different from 0 (t-test P < 0.0001; all tests were 
two-sided; inset, Fig. 4b). This shows that neurons have predictable 
dynamics and, from an initial neuronal response, their future activ-
ity can be estimated.
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However, much stronger evidence supporting our learning rule 
is provided by predicting long-term changes in cortical activity. 
Specifically, repeated presentation of stimuli over tens of minutes 
induces long-term changes in neuronal firing rates34, similar to that 
in perceptual learning. Importantly, based on our model, it was 
possible to infer which individual neurons will increase and which 
neurons will decrease their firing rate. To explain this, first let us 
look at the neural network simulation results in Fig. 5a. This shows 
that, for a neuron, the average change in activity from one learn-
ing epoch to the next depends on the difference between clamped 
(actual) activity and predicted (expected) activity in the previous 
learning epoch (Fig. 5a; correlation coefficient R = 0.35, P < 0.0001; 
Supplementary Information). Similarly, for cortical neurons, we 
found that the change in firing rate from the first to the second half 
of the experiment was positively correlated with differences between 
evoked and predicted activity during the first half of the experiment 
(R = 0.58, P < 0.0001; Fig. 5b and Supplementary Information). 
Those changes in activity patterns were blocked by an NMDA 
(N-methyl-d-aspartate) receptor antagonist, as we showed, using 
this data, in ref. 34, which provides strong support that this phenom-
enon depends on synaptic plasticity. The results presented in Fig. 5 
could be understood in terms of equation (3): if the actual activity 
is higher than predicted, then the synaptic weights are increased, 
thus leading to higher activity of that neuron in the next epoch. The 
similar behaviour of artificial and cortical neurons, where firing rate 
changes to minimize ‘surprise’ (the difference between actual and 
predicted activity), thus provides a strong evidence in support of the 
predictive learning rule presented here.

Deriving the predictive model from spontaneous activity. Next we 
tested whether spontaneous brain activity could also be used to pre-
dict neuronal dynamics during stimulus presentation. Spontaneous 
activity, such as during sleep, is defined as an activity not directly 
caused by any external stimuli. However, there are many similari-
ties between spontaneous and stimulus-evoked activity35–38. For 
example, spontaneous activity is composed of ~50–300-ms-long 
population bursts called packets, which resemble stimulus-evoked 
patterns39. This is illustrated in Fig. 6a, where spontaneous activ-
ity packets in the auditory cortex are visible before sound presenta-
tion40,41. In our experiments, each 1-s-long tone presentation was 
interspersed with 1 s of silence, and the activity during 200–1,000 ms 
after each tone was considered as spontaneous (animals were in a 
soundproof chamber; Supplementary Information). The individ-
ual spontaneous packets were extracted to estimate the neuronal 
dynamics (Methods), then the spontaneous packets were divided 
into ten groups based on similarity in principal component analy-
sis (PCA) space (Supplementary Information), and for each neu-
ron we calculated its average activity in each group (Fig. 6b). As in 
the previous analyses in Fig. 4a, the initial activity in time window 
5–25 ms was used to derive the least-squares model to predict future 
spontaneous activity in the 30–40 ms time window (Supplementary 
Information). This least-squares model was then applied to pre-
dict future evoked responses from initial evoked activity for all 12 
stimuli. Figure 6c shows actual versus predicted evoked activity 
for all neurons and stimuli (correlation coefficient R = 0.2 ± 0.05 
s.e.m., averaged over 40 cells from four animals; the inset shows the  
distribution of correlation coefficients of individual neurons, 
P = 0.0008, t-test). Spontaneous brain activity is estimated to 
account for over 90% of brain energy consumption42, but the func-
tion of this activity remains a mystery. The foregoing results offer a 
new insight: because neuronal dynamics during spontaneous activ-
ity is similar to that during evoked activity35–38, spontaneous activity 
can provide ‘training data’ for neurons to build a predictive model.

Learning rule derivation by maximizing the neuron energy. 
Interestingly, the predictive learning rule in equation (3), 

Δwij = αx̂i(x̂j − x̃j), is not an ad hoc algorithm devised to solve a 
computational problem, but this form of learning rule arises natu-
rally as a consequence of minimizing metabolic cost by a neuron. 
Most of the energy consumed by a neuron is for electrical activity, 
with synaptic potentials accounting for ~50% and action potential 
for ~20% of used adenosine triphosphate (ATP)43. Using a simpli-
fied linear model of neuronal activity, this energy consumption for 
a neuron j can be expressed as −b1(

∑
i wijxi)β1, where xi represents 

the activity of presynaptic neuron i, w represents synaptic weights, b1 
is a constant to match energy units and β1 describes a nonlinear rela-
tion between neuron activity and energy usage, which is estimated 
to be between 1.7 and 4.8 (ref. 44). The remaining ~30% of neuron 
energy is consumed by housekeeping functions, which could be 
represented by a constant −ɛ. On the other hand, the increase in 
neuronal population activity also increases local blood flow, lead-
ing to more glucose and oxygen entering a neuron (for a review on 
neurovascular coupling see ref. 45). This activity-dependent energy 
supply can be expressed as +b2(

∑
k xk)

β2, where xk represents the 
spiking activity of neuron k from a local population of K neurons 
(k ∈ {1, …, j, …, K}), b2 is a constant and β2 reflects the exponen-
tial relation between activity and blood volume increase, which is 
estimated to be in the range of 1.7–2.7 (ref. 44). Note that the sum of 
local population activity 

∑
k xk, also includes the activity of neuron 

j, xj =
∑

i wijxi, as all local neurons contribute to local neurovascu-
lar coupling. Putting all the above terms together, the energy bal-
ance of a neuron j could be expressed as

Ej = −ε − b1
(∑

i
wijxi

)β1
+ b2

(∑

k
xk
)β2 . (4)

This formulation shows that, to maximize the energy balance, a 
neuron has to minimize its electrical activity (be active as little as 
possible), but, at the same time, it should maximize its impact on 
other neurons’ activities to increase blood supply (be active as much 
as possible). Thus, weights have to be adjusted to strike a balance 
between two opposing demands: maximizing the neuron’s down-
stream impact and minimizing its own activity (cost). This energy 
objective of a cell could be paraphrased as the ‘lazy neuron prin-
ciple’: maximum impact with minimum activity.

We can calculate the required changes in synaptic weights ∆w 
that will maximize a neuron’s energy Ej by using the gradient ascent 
method. For this, we need to calculate the derivative of Ej with 
respect to wij:

Δwij =
∂Ej
∂wij

= 0− xiβ1b1
(
∑

i
wijxi

)β1−1

+xiβ2b2
(
∑

k
xk
)β2−1

.
(5)

The appearance of xi in the last term in equation (5) comes from 
the fact that 

∑
k xk, includes xj, which is function of wijxi, as explained 

above. Thus, if we denote population activity as x̄ =
∑

k xk, and 
considering that 

∑
i wijxi = xj, then, after moving xi in front of the 

brackets and after switching the order of terms, we obtain

Δwij = xi(β2b2x̄
β2−1

− β1b1x
β1−1
j ). (6)

In the case where β1 = 2 and β2 = 2, this formula simplifies from 
exponential to linear. However, even if β1 and β2 are anywhere in the 
range 1.7 < β1 < 4.8 and 1.7 < β2 < 2.7, respectively44, the expression 
(x̄β2−1

− xβ1−1
j ) is still well approximated by its linearized version, 

(x̄− xj), for typical values of x in the range 0–1 (Supplementary  
Fig. 5). After also denoting that α1 = β1b1 and α2 =

β2b2
α1

 and after 
taking α1 in front of the brackets, we obtain
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Δwij = α1xi(α2x̄− xj). (7)

Although in this derivation we used a linear model of a neuron, 
including a nonlinear neural model like ReLU, f(x) = x+ = max(0, x), 
leads to similar expression (Supplementary Information). 
Moreover, if we use the same derivation steps but to maximize the 
neuron energy balance in the future, then equation (7) changes to 
Δwij = α3xi,t(α4

︷︸︸︷

x − x̃j) (Supplementary equation (7); details 
about its derivation are provided in the Supplementary Information). 
Note that the above Supplementary equation (7) has the same form 
as the predictive learning rule in equation (3): Δwij = αx̂i(x̂j − x̃j), 
where, 

︷︸︸︷

x  represents population recurrent activity, which can be 
thought of as top-down modulation, similar to x̂. Also note that the 
activity of neuron j, xj from equation (7), became here future pre-
dicted activity x̃j. Thus, this derivation shows that the best strategy 
for a neuron to maximize future energy resources requires predict-
ing its future activity. Altogether, this reveals an unexpected con-
nection, that learning in neural networks could result from each 
neuron simply maximizing the energy balance.

Discussion
We have presented theoretical, computational and biological evi-
dence that the basic principle underlying single neuron learning may 
rely on minimizing future surprise: the difference between actual and 
predicted activity. Thus, a single neuron is not only performing sum-
mation of its inputs, but it also predicts the expected future, which we 
propose is a crucial component of the brain’s learning mechanism. 
Note that a single neuron has complexity similar to single-cell organ-
isms, which have been shown to have ‘intelligent’ adaptive behav-
iours, including predicting the consequences of their actions so as to 
navigate towards food and away from danger46–48. This suggests that 
typical neuronal models used in machine learning may be too sim-
plistic to account for the essential computational properties of bio-
logical neurons. Our work suggests that a predictive mechanism may 
be an important computational element within neurons, which could 
be crucial to understanding learning mechanisms in the brain.

This is supported by a theoretical derivation showing that the 
predictive learning rule provides an optimal strategy for maximiz-
ing the metabolic energy of a neuron. To our knowledge, this is 
the first time a synaptic learning rule has been derived from basic 
cellular principles, that is, from maximizing energy of a cell. This 
provides a more solid theoretical basis over previous biologically 
inspired algorithms, which were developed ad hoc to solve specific 
computational tasks while still satisfying selected biological con-
straints. However, it should be emphasized that many of those pre-
vious algorithms provided novel and insightful ideas that enabled 
the development of our model. Importantly, our derived learn-
ing rule provides a theoretical connection between those diverse 
brain-inspired algorithms, as discussed below.

One of the most influential ideas about the brain’s learning algo-
rithm was proposed by Donald Hebb, based on correlated firing and 
also known as ‘cells that fire together wire together’49. This could be 
written as Δwij ∝ xixj, where Δwij is the change in synaptic weight 
between neurons i and j, ∝ denotes proportionality, and xi and xj 
represents pre- and post-synaptic activity, respectively. Note that this 
is a special case of our predictive learning rule Δwij ∝ xi(xj − x̃j) 
when x̃j = 0, that is, when a neuron does not make any prediction 
(note, here, that xi and xj represent actual activity as is the case in the 
clamped phase, that is, x̂i and x̂j in equation (3), so for comparison 
clarity, the hat symbol ^ can be omitted here). Despite its influential 
role, the original Hebb’s rule was shown to be unstable, as the synap-
tic weights will tend to increase or decrease exponentially. To solve 
this problem, a BCM theory was proposed50 that can be expressed 
in a simplified form as Δwij ∝ xi(xj − θj)xj, where θj can be con-
sidered as the average activity of neuron j across all input patterns. 

Note that, if in our equation Δwij ∝ xi(xj − x̃j), we would use the 
simplest predictive model, always predicting the average activity, 
then x̃j = θj and our predictive rule becomes equivalent to the core 
part of the BCM rule and could be seen as a linearized version of the 
full BCM rule. However, it was noted that networks trained using 
the BCM rule do not achieve the same level of accuracy as other 
learning rules51. This is consistent with our experience that the per-
formance of our algorithm deteriorated when we used the average 
activity of each neuron for predictions. From this, we interpret that 
dynamically adjusting predictions based on the most recent activity 
allows for more precise weight adjustments.

Moreover, we described in the Results how our predictive learn-
ing rule directly relates to contrastive Hebbian learning, which 
belongs to the class of temporal difference learning algorithms. 
Our algorithm is also similar to other predictive algorithms. The 
main difference is that we propose that neurons can internally 
calculate their predictions, rather than relying on specialized neu-
ronal circuits. We mentioned earlier that organisms with simpler 
neuronal systems may not have the predictive circuits that are pro-
posed to exist in the cortex12,14. Thus, a predictive learning rule at 
the level of a single neuron may provide a more basic description 
of the learning process across different brains. However, our model 
should not be taken as precluding the possibility that, in more 
complex brains, in addition to intracellular predictions, neurons 
may form predictive circuits to enhance the predictive abilities 
of an organism. Our model is also closely related to the work in  
refs. 52–54, where depolarization of basal dendrites serves as a pre-
diction of top-down signals from apical dendrites in pyramidal 
neurons. Again, our derived model could be seen as a generaliza-
tion of those ideas, as it is not constrained to any specific cell type. 
The other interesting aspect of our model is that it belongs to the 
category of energy-based models, for which it has been shown that 
synaptic update rules are consistent with spike-timing-dependent 
plasticity55. Considering all the above, we suggest that our plastic-
ity rule derived from basic metabolic principles could serve as a 
common denominator for diverse types of biologically inspired 
learning algorithm and, as such, it may offer a step towards the 
development of a unified neuronal learning theory.

Biological neurons have a variety of cellular mechanisms that 
operate on timescales of ~10–100 ms, suitable for implementing 
predictions56–60. The most likely mechanism appears to be calcium 
signalling. For example, when a neuron is activated, this leads to 
a corresponding elevation of somatic calcium for tens of millisec-
onds61. This time period with elevated calcium could indicate that a 
certain level of new input is expected to arrive in that time window. 
For example, if a bottom-up visual stimulus triggers multiple spikes 
in a neuron, then the resulting proportional increase in calcium 
concentration may signal that a higher level of follow-up activity is 
expected, which could correspond to predicting a higher level of, for 
example, top-down modulation. This would be consistent with our 
experimental data, where higher activity at stimulus onset is cor-
related with higher activity ~20 ms later (Fig. 4; the Supplementary 
Information provides more details on the plausibility of the predic-
tive mechanism implementation and on proposed experiments to 
test it more directly). Interestingly, the core prediction of BCM and 
our model that synaptic weights should increase/decrease if a neu-
ron is stimulated above/below the expected activity is supported by 
experimental evidence from applying strong/weak electrical stimu-
lation inducing long-term potentiation (LTP)/long-term depres-
sion (LTD), respectively62, which also involves calcium-dependent 
mechanisms63. There are also other possible cellular properties that 
could support predictive mechanisms. For example, it has been 
shown that neurons can preferentially respond to inputs arriving at 
specific resonance frequencies (range, ~1–50 Hz)64,65. This is another 
example suggesting that neurons do have cellular mechanisms to 
‘remember’ and to ‘act’ accordingly based on their past activity 
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tens of milliseconds earlier58. Accordingly, considering the cellular 
mechanisms listed above and the consistency of our model with the 
experimental data presented in Figs. 4–6 shows that neurons are at 
least capable of implementing the predictive learning rule.

Our work also suggests that packets could be basic units of infor-
mation processing in the brain. It is well established that sensory 
stimuli evoke coordinated bursts (packets) of neuronal activity last-
ing from tens to hundreds of milliseconds. We call such population 
bursts packets because they have a stereotypical structure, with neu-
rons active at the beginning conveying bottom-up sensory informa-
tion (for example, this is a face) and, later in the packet, representing 
additional higher-order information (for example, this is a happy 
face of that particular friend)66. Also, the later part of the packet 
can encode if there is a discrepancy with expectation (for example, 
this is a novel stimulus67,68; Supplementary Fig. 1). This is probably 
because only the later part of the packet can receive top-down mod-
ulation after information about that stimulus is exchanged between 
other brain areas, which is the case even during passive stimulus 
presentation69,70. Thus, our work suggests that the initial part of the 
packet can be used to infer what the rest of the brain may ‘think’ 
about this stimulus, and the difference from this expectation can 
be used as a learning mechanism to modify synaptic connections. 
This could be the reason why, for example, we cannot process visual 
information faster than ~20 frames per second, as only after evalu-
ating if a given image is consistent with expectation can the next 
image be processed by the next packet, which takes ~50 ms. Our 
predictive learning rule thus implies that sensory information is 
processed in discrete units, and each packet may represent an ele-
mentary unit of perception.

When recording neuronal activity in the cortex, the slowest oscil-
lations (<10 Hz) are by far the most dominant41,71, and one of the big-
gest questions in neuroscience is the function of those oscillations72. 
It is thus worth noticing how a learning rule derived from basic cel-
lular principles may relate to packets that are the main part of slow 
oscillations39,73,74. As described above, dividing information into 
discrete packets could provide an effective mechanism to improve 
neuronal predictions. It could allow for easier differentiation of feed-
forward signals arriving during the initial wave of a packet from pre-
dicted top-down information arriving later during the same packet. 
Another big question in neuroscience is about the function of spon-
taneous brain activity42. For example, why would the brain spend so 
much energy to generate packets even during sleep, for example? 
Interestingly, as in the brain, where most energy is consumed by 
spontaneous activity42, in our model most energy (that is, compu-
tational time) is used for free-phase network activity, which allows 
the intracellular predictive model to learn network dynamics in an 
unsupervised way. Thus, free-phase activity in our model suggests 
that the function of spontaneous packets could be to provide neurons 
with diverse training data to improve the robustness of the predictive 
model, as supported by the results presented in Fig. 6. Moreover, note 
that free-phase activity may also be used for unsupervised learning. 
For example, if a new input is present in the free phase, neurons can 
still calculate whether such evoked activity is consistent with internal 
model predictions. If not, then weights can be modified to get the 
free-phase activity evoked by new stimuli to be closer to the predic-
tion (this is the same mechanism as we use in the clamped phase 
during supervised learning). This is a similar idea to unsupervised 
pre-training75, but more future work is needed to investigate it.

Limitations. Although the present study proposes a novel theoreti-
cal perspective on neuronal learning, this also comes with caveats 
that should be taken into account. Because of the limits of current 
technology, parts of our model cannot yet be properly validated 
experimentally. The major caveat in our model is the assumption of 
a cellular mechanism for predicting future activity. Although neu-
rons do demonstrate activity-dependent calcium signalling61, there 

is no direct evidence that neurons use it to predict expected activ-
ity. The data that we present in Figs. 4 and 6 show that neurons 
have predictable dynamics and this should be interpreted as only 
demonstrating that the main prerequisites for the predictive learn-
ing rule have been met, but they do not prove that neurons use it to 
make predictions. Also, for computational simplicity, in our model 
we present only one stimulus at a time to the network. Brains, in 
contrast, receive a constant stream of sensory stimuli, and new sen-
sory inputs can arrive at the same time as top-down signals, which 
is not the case in our model. However, new sensory stimuli arriv-
ing during neuronal packets already in progress have been shown 
to be suppressed76, which could serve to largely reduce interference 
between stimuli, as assumed in our model. The biological validity 
of this model assumption should be more directly tested. It is also 
important for our model that all data presented in the free phase 
to train the predictive model have the same statistical distribution 
as data presented in the clamped phase. If only noise inputs were 
presented to the network in the free phase, then the performance 
of our model would probably deteriorate. As mentioned earlier, 
numerous studies have shown that spontaneous brain activity is not 
like a random noise, but rather it has similar statistical properties to 
stimulus-evoked patterns35–38. That, together with the experimen-
tal results presented in Fig. 6, provide a rationale for our network 
to use data with similar distributions during the free and clamped 
phases. Moreover, there are other open questions about this model. 
For example, consistent with our model, individual neurons can 
respond to novel stimuli with higher or lower firing rate as com-
pared to familiar stimuli67,77. However, on average, neurons recorded 
in the cortex show a typically higher firing rate to novel stimuli67,77, 
which is not explained by our model. This discrepancy could be 
due to inherent sampling bias in electrophysiological recordings 
towards the most active cells78. It also may suggest the existence of 
additional network-level predictive mechanisms that could explain 
the elevated response to novel stimuli, as proposed in refs. 13,14. More 
future work is needed to answer these questions. It should also be 
noted that, although our analytical derivation of the synaptic learn-
ing rule provides an important first step to link predictive learning 
models to metabolic activity, it required us to largely simplify the 
description of metabolic processes to only the few most important 
variables. The biological accuracy of this simplified description still 
needs to be investigated. Future work should also explore whether 
implementing a nonlinear predictive model within neurons could 
further improve the performance of our network. Nevertheless, 
considering that the presented model provides a theoretical con-
nection between diverse brain-inspired algorithms, this work could 
lead to a better understanding of neuronal principles79.

Methods
Neural network (the MNIST dataset). The code for our network with the 
predictive learning rule that we used to produce the results presented in 
Fig. 2 is available at https://github.com/ykubo82/bioCHL, which contains 
all implementation details. In brief, the base network has the following 
architecture: 784–1000–10 with sigmoidal units, and with symmetric connections 
(Supplementary Figs. 3 and 4 provide more biologically plausible network 
architectures that we also tested). The neuron activity dynamics in the hidden layer 
is described as in a standard network with contrastive Hebbian learning80:

xj,t = S





∑

p
wp,jxp,t−1 + γ

∑

o
wo,jxo,t−1 + bj



 h + xj,t−1(1 − h)

where wp,j denotes the weight from neuron p in the input layer to neuron j in the 
hidden layer, wo,j denotes the weight from the output-layer neuron to hidden-layer 
neuron j, b is a bias, t is a time step and S is a sigmoid activation function. 
Parameter h = 0.1 is the Euler method’s time step commonly used to improve 
computational stability. However, changing h to 0.2 or 1 resulted in similar network 
performance here. In the standard implementation of contrastive Hebbian learning, 
all top-down connections wo,j are also multiplied by a small number γ (~0.1)  
(ref. 80). This different treatment of feedforward and feedback connections could be 
biologically questionable, as many brain circuits are highly recurrent; for example, 

Nature Machine Intelligence | VOL 4 | January 2022 | 62–72 | www.nature.com/natmachintell 69

https://github.com/ykubo82/bioCHL
http://www.nature.com/natmachintell


Articles NaTUre MacHIne InTellIgence

granule cells do not seem to have specific dendrites for receiving feedback signals. 
Therefore, to make our network more biologically plausible we set this feedback 
gain factor γ to 1, thus allowing our network to learn by itself what the contribution 
of each input should be. For the output layer, term ∑

o
wo,jxo,t−1 is set to 0 as there 

are no top-down connections to that layer. Neurons in the input layer do not have 
any dynamics, as their activity is set to a value corresponding to pixel intensity in 
the presented image. To accelerate training, we used AdaGrad81, and we applied 
a learning rate of 0.03 to the hidden layer and 0.02 to the output layer. Synaptic 
weights for neurons in the hidden and output layers were modified as described in 
equation (3).

Future activity prediction. For all the predictions we used a cross-validation 
approach. Specifically, in each training cycle, we ran the free phase on 490 
examples, which were used to derive the least-squares model for each neuron to 
predict its future activity at time step 120 ( x̃(120)) from its initial activity at steps 
1–12 ( x̌(1), ..., x̌(12)). This can be expressed as

x̃(120) = λ(1)x̌(1) + … + λ(12)x̌(12) + b, (8)

where terms in brackets correspond to time steps, and λ and b correspond to 
coefficients and offset term found by the least-squares method. Next, ten new 
examples were taken for which the free phase was run only for 12 steps, then 
the above derived least-squares model was applied to predict the free-phase 
steady-state activity for each of the ten examples. From step 13, the network output 
was clamped. The weights were updated based on the difference between predicted 
and clamped activity calculated only from those ten new examples. This process 
was repeated 120 times in each training epoch. From the MNIST dataset we used 
60,000 examples for the above described training and 10,000 additional examples 
that were only used for testing. For all plots in Figs. 2 and 3 we only used test 
examples that the network had never seen during training. This demonstrates that 
each neuron can accurately predict its future activity even for novel stimuli that 
were never presented before.

Convolutional neural network (CIFAR-10 dataset). The convolutional network 
has an input layer of size 32 × 32 × 3, corresponding to the size of a single image 
with three colour channels in the CIFAR-10 dataset (this dataset consists of 
5,000 training and 1,000 test images for each of ten classes33). The network has 
two convolutional and pooling layers followed by one fully connected output 
layer (Fig. 3a). The filter size for all the convolutional layers is 3 × 3 with stride 
1, and the number of filters is 256 and 512 for the first and second convolutional 
layers, respectively. We did not use zero-padding. For pooling, we used the 
max pooling with 2 × 2 filters and stride 2. The activation function for the 
convolutional and fully connected layers was the hard-sigmoid activation function, 
S(x) = (1 + hardtanh(x − 1)) * 0.5, as implemented in ref. 24. The learning rates 
were 0.4, 0.028 and 0.025 for the first and second convolutional layers and for the 
fully connected output layer, respectively. The Euler method’s time step h was set 
to 1. Considering that clamping output neurons at only two extreme values (0 or 
1) may not be the most accurate model of top-down signals in the brain, here we 
implemented weak clamping as proposed in ref. 23. In brief, instead of setting the 
value of the output neuron to 0 or 1 during the clamped phase, output neurons 
were only slightly nudged towards the required values. For example, if an output 
neuron should have a value of 1, then it was clamped at value x̌ + ε, where x̌ is 
the free-phase steady-state activity of that output neuron and ε is a small nudging 
factor towards 1. To calculate nudging for each neuron we used a clamping factor 
of 0.01 as described in ref. 23. This network with our predictive learning rule 
achieved 20.03% accuracy on the CIFAR-10 dataset. Using the original ‘hard’ 
clamping, changing h to 0.1 or increasing the number of neurons to 326 in the 
first layer gave similar results. We also directly compared the predictive learning 
rule with BPTT on the same convolutional network (Fig. 3). We selected BPTT 
as it uses a roll-out through time, which is more comparable to our model. To 
ensure the generality of the presented results, we repeated the training with BPTT 
three times using different learning rates for each simulation. Using BPTT with 
the same learning rates as in our predictive model (0.4, 0.028, 0.025), the error 
rate was 20.88%. For BPTT with a learning rate of 0.1 for all layers, the error 
rate was 21.23%, and 22.77% for a learning rate of 0.2 (Fig. 3b). The code for the 
convolutional network was adopted from ref. 82, which we modified to include our 
predictive learning rule. To reproduce our results, our code for the convolutional 
network with all implementation details is available at https://github.com/ykubo82/
bioCHL/tree/master/conv. Altogether, those results show that our predictive 
learning rule can also be successfully implemented in deeper networks and on 
more challenging tasks.

Surgery, recording and neuronal data. The experimental procedures for the 
awake, head-fixed experiment have been described previously40,41 and were 
approved by the Rutgers University Animal Care and Use Committee and 
conformed to NIH Guidelines on the Care and Use of Laboratory Animals. Briefly, 
a headpost was implanted on the skull of four Sprague–Dawley male rats (300–
500 g) under ketamine–xylazine anaesthesia, and a craniotomy was performed 
above the auditory cortex and covered with wax and dental acrylic. After recovery, 

the animal was trained for 6–8 days to remain motionless in the restraining 
apparatus. On the day of the surgery, the animal was briefly anaesthetized with 
isoflurane, the dura was resected and, after a recovery period, recording began. For 
recording we used silicon microelectrodes (Neuronexus Technologies) consisting 
of eight or four shanks spaced by 200 µm, with a tetrode recording configuration 
on each shank. Electrodes were inserted in layer V in the primary auditory cortex. 
Units were isolated by a semiautomatic algorithm (klustakwik.sourceforge.net) 
followed by manual clustering (klusters.sourceforge.net)83. Only neurons with 
average stimulus-evoked firing rates higher than 3 s.d. above the pre-stimulus 
baseline were used in analysis, resulting in 9, 12, 12 and 22 neurons from each rat. 
To predict evoked activity from spontaneous activity, we also required that neurons 
must have a mean firing rate during spontaneous packets above said threshold, 
which reduced the number of neurons to 40. The spontaneous packet onsets were 
identified from the spiking activity of all recorded cells as the time of the first spike 
marking a transition from a period of global silence (30 ms with at most one spike 
from any cell) to a period of activity (60 ms with at least 15 spikes from any cells), 
as described in refs. 40,73.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this Article.

Data availability
For testing our model, we used two publicly available datasets: MNIST29 and 
CIFAR-1033.

Code availability
Our code is publicly available at https://github.com/ykubo82/bioCHL and https://
codeocean.com/capsule/4089503 (https://doi.org/10.24433/CO.9801818.v1)84.

Received: 18 January 2021; Accepted: 22 November 2021;  
Published online: 25 January 2022

References
	1.	 Rumelhart, D. E., Durbin, R., Golden, R. & Chauvin, Y. in Backpropagation: 

Theory, Architectures and Applications (eds Chauvin, Y. & Rumelhart, D. E.) 
1–34 (Psychology Press, 1995).

	2.	 Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Ann. 
Rev. Neurosci. 43, 95–117 (2020).

	3.	 Shouval, H. Z. Models of synaptic plasticity. Scholarpedia 2, 1605 (2007).
	4.	 Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G. 

Backpropagation and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).
	5.	 Schwartenbeck, P. et al. Evidence for surprise minimization over value 

maximization in choice behavior. Sci. Rep. 5, 16575 (2015).
	6.	 Gordon, N., Tsuchiya, N., Koenig-Robert, R. & Hohwy, J. Expectation and 

attention increase the integration of top-down and bottom-up signals in 
perception through different pathways. PLoS Biol. 17, e3000233 (2019).

	7.	 Bar, M. The proactive brain: using analogies and associations to generate 
predictions. Trends Cogn. Sci. 11, 280–289 (2007).

	8.	 Clark, A. Whatever next? Predictive brains, situated agents and the future of 
cognitive science. Behav. Brain Sci. 36, 181–204 (2013).

	9.	 Buzsáki, G. The Brain from Inside Out (Oxford Univ. Press, 2019).
	10.	O’Reilly, R. C., Wyatte, D. R. & Rohrlich, J. Deep predictive learning: a 

comprehensive model of three visual streams. Preprint at https://arxiv.org/
abs/1709.04654 (2017).

	11.	Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 
695–711 (2012).

	12.	Rao, R. P. & Ballard, D. H. in Neurobiology of Attention (eds Itti, L. et al.) 
553–561 (Elsevier, 2005).

	13.	Whittington, J. C. & Bogacz, R. An approximation of the error 
backpropagation algorithm in a predictive coding network with local Hebbian 
synaptic plasticity. Neural Comput. 29, 1229–1262 (2017).

	14.	Sacramento, J., Costa, R. P., Bengio, Y. & Senn, W. Dendritic cortical 
microcircuits approximate the backpropagation algorithm. In Advances in 
Neural Information Processing Systems 8721–8732 (NIPS, 2018).

	15.	Gomez, M. et al. Ca2+ signaling via the neuronal calcium sensor-1  
regulates associative learning and memory in C. elegans. Neuron 30,  
241–248 (2001).

	16.	Roberts, A. C. & Glanzman, D. L. Learning in aplysia: looking at synaptic 
plasticity from both sides. Trends Neurosci. 26, 662–670 (2003).

	17.	Kandel, E. R., Schwartz, J. H. & Jessell, T. M. Principles of Neural Science 
(McGraw-Hill, 2000).

	18.	O’Reilly, R. C. Biologically plausible error-driven learning using local 
activation differences: the generalized recirculation algorithm. Neural 
Comput. 8, 895–938 (1996).

	19.	Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. A learning algorithm for 
Boltzmann machines. Cogn. Sci. 9, 147–169 (1985).

	20.	Hinton, G. E. & McClelland, J. L. Learning representations by recirculation. 
In Neural Information Processing Systems 358–366 (NIPS, 1988).

Nature Machine Intelligence | VOL 4 | January 2022 | 62–72 | www.nature.com/natmachintell70

https://github.com/ykubo82/bioCHL/tree/master/conv
https://github.com/ykubo82/bioCHL/tree/master/conv
http://klustakwik.sourceforge.net
http://klusters.sourceforge.net
https://github.com/ykubo82/bioCHL
https://codeocean.com/capsule/4089503
https://codeocean.com/capsule/4089503
https://doi.org/10.24433/CO.9801818.v1
https://arxiv.org/abs/1709.04654
https://arxiv.org/abs/1709.04654
http://www.nature.com/natmachintell


ArticlesNaTUre MacHIne InTellIgence

	21.	Hinton, G. E., Dayan, P., Frey, B. J. & Neal, R. M. The ‘wake-sleep’ algorithm 
for unsupervised neural networks. Science 268, 1158–1161 (1995).

	22.	Dayan, P., Hinton, G. E., Neal, R. M. & Zemel, R. S. The Helmholtz machine. 
Neural Comput. 7, 889–904 (1995).

	23.	Scellier, B. & Bengio, Y. Equilibrium propagation: bridging the gap between 
energy-based models and backpropagation. Front. Comput. Neurosci. 11,  
24 (2017).

	24.	Laborieux, A. et al. Scaling equilibrium propagation to deep ConvNets by 
drastically reducing its gradient estimator bias. Front. Neurosci. 15,  
129 (2021).

	25.	Baldi, P. & Pineda, F. Contrastive learning and neural oscillations. Neural 
Comput. 3, 526–545 (1991).

	26.	Almeida, L. B. A learning rule for asynchronous perceptrons with feedback in 
a combinatorial environment. In Artificial Neural Networks: Concept Learning 
(ed. Diederich, J.) 102–111 (ACM, 1990).

	27.	Pineda, F. J. Generalization of back-propagation to recurrent neural networks. 
Phys. Rev. Lett. 59, 2229–2232 (1987).

	28.	Xie, X. & Seung, H. S. Equivalence of backpropagation and contrastive 
Hebbian learning in a layered network. Neural Comput. 15, 441–454 (2003).

	29.	LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning 
applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).

	30.	Eccles, J. C., Fatt, P. & Koketsu, K. Cholinergic and inhibitory synapses in a 
pathway from motor-axon collaterals to motoneurones. J. Physiol. 126, 
524–562 (1954).

	31.	LeCun, Y. & Bengio, Y. Convolutional networks for images, speech, and 
time-series. In The Handbook of Brain Theory and Neural Networks  
(ed. Arbib, M. A.) 3361 (MIT Press, 1995).

	32.	Yamins, D. L. et al. Performance-optimized hierarchical models predict  
neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 
8619–8624 (2014).

	33.	Krizhevsky, A. & Hinton, G. Learning Multiple Layers of Features from Tiny 
Images Technical Report TR-2009 (Univ. Toronto, 2009).

	34.	Bermudez Contreras, E. J. et al. Formation and reverberation of sequential 
neural activity patterns evoked by sensory stimulation are enhanced during 
cortical desynchronization. Neuron 79, 555–566 (2013).

	35.	MacLean, J. N., Watson, B. O., Aaron, G. B. & Yuste, R. Internal dynamics 
determine the cortical response to thalamic stimulation. Neuron 48,  
811–823 (2005).

	36.	Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity 
reveals hallmarks of an optimal internal model of the environment. Science 
331, 83–87 (2011).

	37.	Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A. & Arieli, A. 
Spontaneously emerging cortical representations of visual attributes. Nature 
425, 954–956 (2003).

	38.	Luczak, A. & MacLean, J. N. Default activity patterns at the neocortical 
microcircuit level. Front. Integrative Neurosci. 6, 30 (2012).

	39.	Luczak, A., McNaughton, B. L. & Harris, K. D. Packet-based communication 
in the cortex. Nat. Rev. Neurosci. 16, 745–755 (2015).

	40.	Luczak, A., Barthó, P. & Harris, K. D. Spontaneous events outline the realm 
of possible sensory responses in neocortical populations. Neuron 62,  
413–425 (2009).

	41.	Luczak, A., Bartho, P. & Harris, K. D. Gating of sensory input by spontaneous 
cortical activity. J. Neurosci. 33, 1684–1695 (2013).

	42.	Raichle, M. E. & Mintun, M. A. Brain work and brain imaging. Annu. Rev. 
Neurosci. 29, 449–476 (2006).

	43.	Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 
75, 762–777 (2012).

	44.	Devor, A. et al. Coupling of total hemoglobin concentration, oxygenation, 
and neural activity in rat somatosensory cortex. Neuron 39, 353–359 (2003).

	45.	Sokoloff, L. The physiological and biochemical bases of functional brain 
imaging. In Advances in Cognitive Neurodynamics ICCN 2007 (eds Wang, R. 
et al.) 327–334 (Springer, 2008).

	46.	Boisseau, R. P., Vogel, D. & Dussutour, A. Habituation in non-neural 
organisms: evidence from slime moulds. Proc. R. Soc. B 283, 20160446 
(2016).

	47.	Kaiser, A. D. Are myxobacteria intelligent? Front. Microbiol. 4, 335 (2013).
	48.	Tero, A. et al. Rules for biologically inspired adaptive network design. Science 

327, 439–442 (2010).
	49.	Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory 

(Wiley, 1949).
	50.	Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development 

of neuron selectivity: orientation specificity and binocular interaction in 
visual cortex. J. Neurosci. 2, 32–48 (1982).

	51.	Krotov, D. & Hopfield, J. J. Unsupervised learning by competing hidden units. 
Proc. Natl Acad. Sci. USA 116, 7723–7731 (2019).

	52.	Hawkins, J. & Ahmad, S. Why neurons have thousands of synapses, a theory 
of sequence memory in neocortex. Front. Neural Circuits 10, 23 (2016).

	53.	Guerguiev, J., Lillicrap, T. P. & Richards, B. A. Towards deep learning with 
segregated dendrites. eLife 6, e22901 (2017).

	54.	Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A. & Naud, R. 
Burst-dependent synaptic plasticity can coordinate learning in hierarchical 
circuits. Nat. Neurosci. 24, 1010–1019 (2021).

	55.	Bengio, Y., Mesnard, T., Fischer, A., Zhang, S. & Wu, Y. STDP-compatible 
approximation of backpropagation in an energy-based model. Neural Comput. 
29, 555–577 (2017).

	56.	Stuart, G. & Sakmann, B. Amplification of EPSPs by axosomatic sodium 
channels in neocortical pyramidal neurons. Neuron 15, 1065–1076 (1995).

	57.	Koch, C., Rapp, M. & Segev, I. A brief history of time (constants). Cerebral 
Cortex 6, 93–101 (1996).

	58.	Gutfreund, Y., Yarom, Y. & Segev, I. Subthreshold oscillations and 
resonant-frequency in guinea-pig cortical-neurons—physiology and 
modeling. J. Physiol. 483, 621–640 (1995).

	59.	Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for 
coupling inputs arriving at different cortical layers. Nature 398, 338–341 
(1999).

	60.	Ha, G. E. & Cheong, E. Spike frequency adaptation in neurons of the central 
nervous system. Exp. Neurobiol. 26, 179–185 (2017).

	61.	Ali, F. & Kwan, A. C. Interpreting in vivo calcium signals from neuronal cell 
bodies, axons and dendrites: a review. Neurophotonics 7, 011402 (2019).

	62.	Dudek, S. & Bear, M. Homosynaptic long-term depression in area CA1 of 
hippocampus and effects of N-methyl-d-aspartate receptor blockade.  
Proc. Natl Acad. Sci. USA 89, 4363–4367 (1992).

	63.	Bear, M. F. Mechanism for a sliding synaptic modification threshold. Neuron 
15, 1–4 (1995).

	64.	Llinas, R. R., Grace, A. A. & Yarom, Y. In vitro neurons in mammalian 
cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz 
frequency range. Proc. Natl Acad. Sci. USA 88, 897–901 (1991).

	65.	Hutcheon, B. & Yarom, Y. Resonance, oscillation and the intrinsic frequency 
preferences of neurons. Trends Neurosci. 23, 216–222 (2000).

	66.	Sugase, Y., Yamane, S., Ueno, S. & Kawano, K. Global and fine information 
coded by single neurons in the temporal visual cortex. Nature 400,  
869–873 (1999).

	67.	Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. 
Experience-dependent sharpening of visual shape selectivity in inferior 
temporal cortex. Cerebral Cortex 16, 1631–1644 (2006).

	68.	Sams, M., Paavilainen, P., Alho, K. & Naatanen, R. Auditory frequency 
discrimination and event-related potentials. Electroencephalogr. Clin. 
Neurophysiol. 62, 437–448 (1985).

	69.	Roland, P. E. et al. Cortical feedback depolarization waves: a mechanism of 
top-down influence on early visual areas. Proc. Natl Acad. Sci. USA 103, 
12586–12591 (2006).

	70.	Xu, W., Huang, X., Takagaki, K. & Wu, J.-Y. Compression and reflection of 
visually evoked cortical waves. Neuron 55, 119–129 (2007).

	71.	Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science 
304, 1926–1929 (2004).

	72.	Buzsaki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).
	73.	Luczak, A., Barthó, P., Marguet, S. L., Buzsáki, G. & Harris, K. D. Sequential 

structure of neocortical spontaneous activity in vivo. Proc. Natl Acad. Sci. 
USA 104, 347–352 (2007).

	74.	Luczak, A. in Analysis and Modeling of Coordinated Multi-Neuronal Activity 
(ed. Tatsuno, M.) 163–182 (Springer, 2015).

	75.	Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data 
with neural networks. Science 313, 504–507 (2006).

	76.	Sachdev, R. N., Ebner, F. F. & Wilson, C. J. Effect of subthreshold up and 
down states on the whisker-evoked response in somatosensory cortex.  
J. Neurophysiol. 92, 3511–3521 (2004).

	77.	Woloszyn, L. & Sheinberg, D. L. Effects of long-term visual experience on 
responses of distinct classes of single units in inferior temporal cortex. 
Neuron 74, 193–205 (2012).

	78.	Harris, K. D., Quiroga, R. Q., Freeman, J. & Smith, S. L. Improving  
data quality in neuronal population recordings. Nat. Neurosci. 19,  
1165–1174 (2016).

	79.	Luczak, A. & Kubo, Y. Predictive neuronal adaptation as a basis for 
consciousness. Front. Syst. Neurosci. 15, 767461 (2021).

	80.	Detorakis, G., Bartley, T. & Neftci, E. Contrastive Hebbian learning with 
random feedback weights. Neural Netw. 114, 1–14 (2019).

	81.	Duchi, J., Hazan, E. & Singer, Y. Adaptive subgradient methods for  
online learning and stochastic optimization. J. Mach. Learn. Res. 12, 
2121–2159 (2011).

	82.	Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y. & Scellier, B. Updates of 
equilibrium prop match gradients of backprop through time in an RNN with 
static input. In Advances in Neural Information Processing Systems  
7079–7089 (NIPS, 2019).

	83.	Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H. & Buzsáki, G. Accuracy 
of tetrode spike separation as determined by simultaneous intracellular and 
extracellular measurements. J. Neurophysiol. 84, 401–414 (2000).

	84.	Luczak, A., McNaughton, B. L. & Kubo, Y. Neurons learn by predicting future 
activity. CodeOcean https://doi.org/10.1101/2020.09.25.314211 (2021).

Nature Machine Intelligence | VOL 4 | January 2022 | 62–72 | www.nature.com/natmachintell 71

https://doi.org/10.1101/2020.09.25.314211
http://www.nature.com/natmachintell


Articles NaTUre MacHIne InTellIgence

Acknowledgements
This work was supported by Compute Canada, NSERC and CIHR grants to A.L. and 
DARPA HR0011-18-2-0021 and NIH MH125557 grants to B.L.M. We thank A. Gruber 
for sharing computational resources, K. Ali, L. Grasse, M. Klassen, E. Chalmers and R. 
Torabi for help, and we thank P. Bartho for sharing data.

Author contributions
A.L. conceived the project, analysed data, performed computer simulations and wrote 
the manuscript. B.L.M. engaged in theoretical discussions and commented extensively 
on the manuscript. Y.K. performed computer simulations and contributed to writing the 
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s42256-021-00430-y.

Correspondence and requests for materials should be addressed to Artur Luczak.

Peer review information Nature Machine Intelligence thanks Gabriel Kreiman  
and the other, anonymous, reviewer(s) for their contribution to the peer review  
of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long 

as you give appropriate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made. The images or other 
third party material in this article are included in the article’s Creative Commons license, 
unless indicated otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons license and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022

Nature Machine Intelligence | VOL 4 | January 2022 | 62–72 | www.nature.com/natmachintell72

https://doi.org/10.1038/s42256-021-00430-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/natmachintell


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Artur Luczak

Last updated by author(s): Oct 31, 2021

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Our code is publicly available at: https://github.com/ykubo82/bioCHL.

Data analysis Our code is publicly available at: https://github.com/ykubo82/bioCHL.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

For testing our model, we used two publicly available datasets: MNIST [ref 29] and CIFAR-10 [ref 33]. 



2

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Only neurons with average stimulus evoked firing rates higher than 3 SD above pre-stimulus baseline were used in analysis, resulting in 9, 12, 
12, and 22 neurons from each rat (see Methods for detail).

Data exclusions As described in the Methods section, only neurons with average stimulus evoked firing rates higher than 3 SD above pre-stimulus baseline 
were used in our analyses.

Replication We used 12-fold cross-validation, where responses from 11 stimuli were used to train the least-square model, which was then applied to 
predict neuron activity for the 1 remaining stimulus.

Randomization All animals belong to the same group.

Blinding Blinding was not relevant for this study. All animals belong to the same group.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Sprague-Dawley male rats (300-500g)

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight The experimental data have been previously published [ref 40,41] and all procedures were approved by the Rutgers University 
Animal Care and Use Committee, and conformed to NIH Guidelines on the Care and Use of Laboratory Animals

Note that full information on the approval of the study protocol must also be provided in the manuscript.


	Neurons learn by predicting future activity

	Results

	Predictive learning rule and contrastive Hebbian learning. 
	Learning rule validation in neural network simulations. 
	Biologically motivated network architectures. 
	Predictive learning rule validation in awake animals. 
	Deriving the predictive model from spontaneous activity. 
	Learning rule derivation by maximizing the neuron energy. 

	Discussion

	Limitations. 

	Methods

	Neural network (the MNIST dataset)
	Future activity prediction
	Convolutional neural network (CIFAR-10 dataset)
	Surgery, recording and neuronal data
	Reporting Summary

	Acknowledgements

	Fig. 1 Basics of the algorithm.
	Fig. 2 Neuron prediction of expected activity.
	Fig. 3 Implementation of the predictive learning rule in a multilayer convolutional neuronal network.
	Fig. 4 Predicting the future activity of cortical neurons.
	Fig. 5 Long-term changes in neuronal activity in our model and in cortical neurons.
	Fig. 6 Predicting stimulus-evoked responses from spontaneous activity dynamics.




