
Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

1 of 11

N E U R O S C I E N C E

Self-backpropagation of synaptic modifications
elevates the efficiency of spiking and artificial
neural networks
Tielin Zhang1,2, Xiang Cheng1,2, Shuncheng Jia1,2, Mu-ming Poo2,3,4,5, Yi Zeng1,2,4, Bo Xu1,2,4*

Many synaptic plasticity rules found in natural circuits have not been incorporated into artificial neural networks
(ANNs). We showed that incorporating a nonlocal feature of synaptic plasticity found in natural neural networks,
whereby synaptic modification at output synapses of a neuron backpropagates to its input synapses made by
upstream neurons, markedly reduced the computational cost without affecting the accuracy of spiking neural
networks (SNNs) and ANNs in supervised learning for three benchmark tasks. For SNNs, synaptic modification at
output neurons generated by spike timing–dependent plasticity was allowed to self-propagate to limited upstream
synapses. For ANNs, modified synaptic weights via conventional backpropagation algorithm at output neurons
self-backpropagated to limited upstream synapses. Such self-propagating plasticity may produce coordinated
synaptic modifications across neuronal layers that reduce computational cost.

INTRODUCTION
Activity-dependent synaptic modification is essential for learning
in natural and artificial neural networks (ANNs). In ANNs, the idea
that synaptic weights could be tuned to achieve the correct output
has led to the development of a computational algorithm for super-
vised learning known as backpropagation (BP) (1). In BP, errors in
the output of ANNs with respect to the differences between output
values and expected values are used to adjust synaptic weights of
upstream synapses layer by layer until the output meets the expec-
tation. BP has been widely used in various types of ANNs, including
convolutional and recurrent neural networks (2). There is now in-
creasing interest in brain-inspired machine learning algorithms (3–6)
that incorporate distinct brain features and could achieve problem
solving with high efficiency and low computational cost. Spiking
neural networks (SNNs) are considered to be the third-generation
ANNs (7), in which information is conveyed by discrete events,
called spikes or action potentials. While SNNs could be more potent
in processing temporal information (8), there remains difficulty in
developing learning algorithms with an efficiency comparable to
that of BP. Methods commonly used to train SNNs to perform
machine learning tasks can be roughly classified into five categories:
recursive least square (RLS)–based, gradient-based, reward-based,
conversion-based, and plasticity-based. First-order reduced and
controlled error (FORCE) is a special RLS-based method, which has
been well applied on tasks of sequence storage and replay in a recur-
rent SNN (9). Gradient-based methods are borrowed from BP,
including spatial and temporal types, to train SNNs in a supervised
manner. Spatial types such as surrogate gradient (10) and approxi-
mate gradient [pseudo-BP (p-BP)] (11) are used to circumvent the
nondifferential nature of spikes (7), and temporal types like BP

through time (BPTT) (12) and SpikeProp (13) are designed for gra-
dient learning recursively and temporally (with spike latency). The
reward-based methods, including eligibility propagation (14) and
reward propagation (15), are more efficient on sequential machine
learning tasks. Conversion-based methods that directly convert
learned ANNs to SNNs are simpler but still limited by BP on both
biological interpretability and plausibility (16). Substantial efforts
have also been made in applying biologically plausible plasticity
rules found in natural neural circuits into SNNs, including Hebb’s
rule (17, 18), short-term plasticity (STP) (19, 20), long-term poten-
tiation (LTP) (21, 22), long-term depression (LTD) (23), and spike
timing–dependent plasticity (STDP) (24, 25). All these are local
plasticity rules involving activity-dependent modification of synapses
that induce the postsynaptic activity. Here, we focused more on
plasticity-based methods and showed that introducing a novel form
of nonlocal synaptic modification, termed “self-BP” (SBP) of synaptic
potentiation and depression (26–30), helped to achieve a coordinated
global propagation of synaptic modification, resulting in increased
accuracy of SNNs and reduced computational cost of ANNs in per-
forming supervised learning.

The phenomenon of SBP, first discovered in cultures of hippo-
campal neurons (26, 30), involves cross-layer BP of LTP and LTD
from output synapses to input synapses of a neuron (Fig. 1A). Al-
though other forms of nonlocal spreads of LTP and LTD in the pre-
and postsynaptic neurons have been observed in natural networks
(26, 27, 30), we here confined our study on SBP, because its existence
was confirmed in developing retinotectal circuits in vivo (28, 29).
The phenomenon of SBP represents a form of nonlocal activity–
dependent synaptic plasticity that may endow developing neural
circuits the capacity to modify the weights of input synapses on a
neuron in accordance with the status of its output synapses (27). In
training SNNs, potentiation and depression of synapses on output
neurons could result from STDP due to relative spike timing between
network-generated and targeted spike trains at the output neuron,
thus representing positive and negative weight modifications based
on supervised learning. Further SBP of potentiation and depression
signals to upstream synapses provided an efficient approach for
backpropagating the “correct” and “error” signals, respectively. In

1Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese
Academy of Sciences, Beijing 100190, China. 2School of Artificial Intelligence, Uni-
versity of Chinese Academy of Sciences, Beijing 100049, China. 3Institute of Neuro-
science, State Key Laboratory of Neuroscience, Chinese Academy of Sciences,
Shanghai 200031, China. 4Center for Excellence in Brain Science and Intelligence
Technology, Chinese Academy of Sciences, Shanghai 200031, China. 5Shanghai Center
for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
*Corresponding author. Email: xubo@ia.ac.cn.

Copyright © 2021
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim to
original U.S. Government
Works. Distributed
under a Creative
Commons Attribution
NonCommercial
License 4.0 (CC BY-NC).

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

mailto:xubo@ia.ac.cn

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

2 of 11

training ANNs, traditional BP was used for synaptic weight adjust-
ment at the output layer based on error signals. However, we found
that replacing BP with SBP for weight adjustment of upstream
synapses during a fraction of the learning period also produced
beneficial effects.

RESULTS
Introducing SBP into three-layer SNNs and ANNs
For training SNNs, we used a three-layer SNN (Fig. 1C). In the first
(input) layer, neurons received spike trains as inputs encoded by
comparing raw signals from datasets with a train of generated ran-
dom numbers (see Materials and Methods for more details). The
second (hidden) layer consisted of both excitatory and inhibitory
leaky integrate-and-fire (LIF) neurons that exhibited the refractory
period, nonlinear integration, and nondifferentiable membrane po-
tential. The third (output) layer consisted of excitatory LIF neurons
that received spiking signals from hidden layer neurons, and the
supervised teaching signals were presented only in training proce-
dures. The learning process used both local form of synaptic modi-
fication, i.e., STP (19, 20, 31) and STDP (32, 33), and nonlocal SBP
via sequential steps. First, feedforward processing of spiking signals
was performed without introducing synaptic plasticity. Second, we

introduced STP and homeostatic adjustments of membrane poten-
tial (homeo-V) in hidden layer neurons to stabilize the spiking
capability of the network (see Materials and Methods for details).
Third, potentiation (“+”) or depression (“−”) of synaptic weights
(Wj, k) was produced by the STDP rule at all synapses made by
hidden neurons onto output neurons (Fig. 1B). Last, potentiation
or depression of latter synapses was allowed to spread retrogradely
by SBP to synapses made by input neurons on hidden neurons. For
introducing some specificity in the amount of synaptic modification
via SBP, we set a percentage factor (p∈ [10%,100%]) and a fraction
factor (f∈ [0.1,1]), allowing SBP to cover only a percentage of up-
stream neurons (see Materials and Methods for details) and a frac-
tion of synaptic modifications to undergo SBP, respectively.

The restricted Boltzmann machine (RBM) network (34) was
used to examine the effect of introducing SBP into ANNs. The RBM
contained three layers, artificial neurons with rectified linear unit
(ReLU) activation functions, and fully connected feedforward con-
nections (Fig. 2A). The learning procedure consisted of two phases:
the unsupervised “sleep” phase and the supervised “wake” phase.
During the sleep phase, only the energy function (see Materials and
Methods for details) was used for calculating neuronal states toward
the minimal energy (Fig. 2C). The wake phase included two types
(I and II), interleaved by the sleep phase. In wake phase I, synaptic

C

B

SNN

Hidden neuron with
the output synapse
inducing STDP

Output neuron
inducing STDP

Input neurons with
synapses receiving
SBP

A

Fe
ed
fo
rw
ar
d
di
re
ct
io
n

+/−

+/− +/−

Input

Hidden

Output

Wj,k

1 0 0 0 0
Out2

0 0 0 0 1
Teaching2

1 0 0 0 1Vj

0 1 0 1 0
Vj

(+)(−)

 Depression

Updated Out2
with MSE

(Out2, Teaching2)

R
an
ge
 o
f p
ro
pa
ga
tio
n

Wj,k

+/-

Self-backpropagation

Vk

+/−

Potentiation

Vi

Refractory
period

Homeostatic V adjustment

Time

Teaching signal

SBP

STP
V

STP STDP

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

Repeated
one-hot labels

Encoding

Output

1

0

0

0

 +/−

Direction of SBP

Induction site for +/−

Potentiation/
depression

M
ea
n
sq
ua
re

er
ro
r

Fig. 1. Introducing biological SBP into SNNs. (A) Schematic diagram depicting the BP of potentiation (“+”) or depression (“−”) from the synapses at the output layer to
those at the hidden layer in a three-layer network. The propagated synaptic modification had the same sign, consistent with the biological discovery of SBP (27). Similar
configurations of fixed gradient mapping between neighborhood layers exist in artificial feedback alignment (48) and direct target propagation (49). (B) For a three-layer
SNN, the induction of potentiation (+) or depression (−) occurred at the synapse Wj, k on the output neuron by STDP, based on the timing of presynaptic spikes (in the
hidden neuron) relative to the postsynaptic spikes in the output neuron, after updating by mean square error (MSE) of network-generated (Out2) and teaching spike trains
(Teaching2). Wi, j and Wj, k represent synaptic weights of connections onto hidden and output neurons, respectively. The + and − signals created at synapses of hidden
layer neuron (pink) onto an output neuron (blue) were allowed to spread to a percentage factor p (p∈ [10%,100%]) of input synapses with a fraction factor f (f∈ [0.1,1])
of the signals generated by the STDP (orange). Vj and Vk are membrane potentials at hidden and output layers, respectively. (C) The three-layer architecture of SNN, in
which SBP and local plasticity (STP, STDP, and homeostatic V adjustment) were introduced at synapses at hidden and output layers, and the teaching spike train was
given to the output LIF neurons. The diagram illustrates an output neuron inducing STDP (blue), a hidden neuron with the output synapse inducing STDP (pink), and input
neurons with synapses receiving SBP (yellow).

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

3 of 11

weights at the output layer (Wj, k) were updated according to stan-
dard BP algorithm with both energy and cost functions (BP1; see
Materials and Methods for details), resulting in potentiation (+) or
depression (−), and this was followed by the SBP of + or − (Fig. 2D).
In wake phase II, BP was performed in a conventional manner, with
BP2 (at the hidden layer) following BP1 (Fig. 2E). The learning
procedure is summarized in the schematic diagram in Fig. 2B. The
amount of self-propagated modifications was set as a fraction of
∆Wj, k, represented by the parameter sbp in ERBM and also the
parameter f (corresponding to that in SNNs), and the percentage
of upstream neurons receiving SBP was described by p as that
in SNNs. Note that the replacement of BP2 by SBP during wake
phase I could notably reduce the computational cost normally re-
quired to perform the differential calculation of BP2 during the
learning process.

In this study, we examined the effects of introducing SBP on the
accuracy and computational cost of SNNs and ANNs for three
different learning tasks involving different extents of temporal
information: (i) recognition of handwritten digits, using Modified
National Institute of Standards and Technology (MNIST) dataset
(fig. S1A) (35); (ii) phonetic transcription, using NETtalk dataset
(fig. S1B) (36); and (iii) gesture recognition, using event-based
dynamic vision sensor gesture (DvsGesture) dataset (fig. S1C) (37).
The computational cost of networks during learning was defined by
the product of the mean training epoch to achieve some defined
accuracy levels (Fig. 3A) and algorithmic complexity per epoch
(Fig. 3B). Our results demonstrated that introducing SBP into SNNs

resulted in higher accuracies and lower computational costs in learn-
ing all three tasks. Furthermore, the combined use of SBP and BP in
ANNs also resulted in similar benefits in all three tasks. These results
underscored the usefulness of introducing a novel nonlocal plasticity
rule found in natural neural networks into SNNs and ANNs.

SBP improved the efficiency of SNNs for three
benchmark tasks
For learning hand digit recognition on MNIST dataset, we used an
SNN comprising 784 input neurons, 500 hidden neurons (half
excitatory and half inhibitory), and 10 output neurons, with other
configuration parameters shown in table S1. We trained the SNN
with a subset (60,000) of MNIST dataset and tested its accuracy us-
ing the remaining MNIST data (10,000). The values of p (p= 0.3)
and f (f= 0.7) were chosen as the standard parameters after a range
of values were tested for optimal performance of SNNs (Fig. 4B).
We found that the training error rate of SNNs using SBP converged
faster than that found without using SBP (fig. S2A). The test error
rate reached 6.25 ± 0.52% (SD, n= 5 repeating experiments with
different random seeds) after the 91st epoch when only local
plasticity rules (STDP and STP) were used, and it was significantly
reduced to 4.86 ± 0.12% (SD, n= 5) after the 100th epoch with the
addition of SBP (P< 0.01, t test; Fig. 4A). Furthermore, we compared
the accuracy of the hand digit recognition achieved by SBP with or
without STP and found that STP helped to converge training
(fig. S2D) and reduce test error rate of SNNs slightly (from 5.02 ± 0.14%
to 4.86 ± 0.12%; SD, n= 5; P< 0.01, t test; fig. S2G). Moreover, the

A

BP1

BP2

SBP

E
rr
or
 s
ig
na
ls

C Sleep phase

Wi,j Wj,k

.

.

.

.

.

.

.

.

.

.

.

.

Feedforward processing

Wake phase (BP1 + SBP)

SBP BP1

R
an
ge
 o
f p
ro
pa
ga
tio
n Wi,j Wj,k

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

+/− +/−

RBM

Hidden neuron with the
output synapse inducing
BP

Output neuron inducing
BP

Input neurons with
synapses receiving SBP

+ : Potentiation (W > 0)
− : Depression (W < 0)

Wi,j Wj,k

.

.

.

.

.

.

BP2 BP1

.

.

.

.

.

.

Wake phase (BP1 + BP2)E

B

D

Sleep phase

Learning process in RBM

Wake phase (BP1 + SBP)

Sleep phase

Wake phase (BP1 + BP2)

NS

NW

NW

NS

E
po
ch
s

Wi,j

Wj,k

0
10

0
4

36

126

.

Fig. 2. Introducing biological SBP into ANNs. (A) Schematic diagram depicting the architecture of the shallow ANN, represented by a three-layer restricted Boltzmann
machine (RBM), with full connections between neurons in neighborhood layers. Neurons in hidden and output layers were artificial rate neurons with ReLU activation
functions. Two network state indicators were used: the unsupervised energy function (ERBM; see Materials and Methods for details) describing the inner network state and
the supervised cost function (CRBM; see Materials and Methods for details) describing network output state. (B) Schematic diagram depicting the learning process of RBM
using SBP, in which wake phase I using BP (BP1) and SBP and wake phase II using only BP (BP1 + BP2) interleaved by the sleep phase. (C) Unsupervised sleep phase, in which
both Wi, j and Wj, k were tuned toward minimal energy function ERBM. (D) Wake phase I using both BP and SBP. The BP1 produced potentiation (∆Wj, k> 0, +) or depression
(∆Wj, k< 0, −) of Wj, k between a hidden neuron (pink) and output neuron (blue), determined by differentiating the sum of CRBM and ERBM. The SBP induced + and − of Wi, j
based on ∆Wi, j, with a percentage factor p and a fraction factor f as described in Fig. 1B. (E) Wake phase II using only BP containing both BP1 and BP2. Wi, j and Wj, k were
updated on the basis of the minimization of both cost and energy functions with the chain rule of calculus.

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

4 of 11

computational cost for SNNs with and without SBP was (1.92 ±
0.27) × 107 and (0.88 ± 0.09)×107 (SD, n= 5; P< 0.01, t test), respec-
tively (Fig. 4C). Thus, the SBP elevated accuracy (by ~1.4%) and
reduced computational cost (by ~54.2%) of SNNs. Last, we com-
pared the performance and computational cost of our learning
algorithms with those of other reported state-of-the-art SNN
algorithms using plasticity-based (20, 32, 38) and gradient-based
(14, 15, 39, 40) rules. For an SNN model consisting of the same
number of parameters as described above (the number of neurons
in input, hidden, and output layers), our algorithms yielded a higher
accuracy and lowered computational cost than previously reported
plasticity-based algorithms (fig. S3, A and B, and table S2). We also
examined a gradient-based SNN using SBP [spiking multilayer per-
ception (spiking-MLP)] and found similar benefits (fig. S3, A and B).

For learning phonetic transcription on NETtalk dataset, the SNN
had to deal with multiple target phonemes. We thus used an archi-
tecture comprising 189 input neurons, 500 hidden neurons (half
excitatory and half inhibitory), and 26 output neurons (that yielded
116 classes). Other network parameters are shown in table S1. The
introduction of SBP improved the efficiency of SNNs after training
with p= 0.3 and f= 0.7 (Fig. 4E), showing a test error rate of 14.30 ±
0.12% (SD, n= 5), which was lower than that obtained by using only
STP and STDP in the absence of SBP (15.74 ± 0.20%; SD, n= 5; P< 0.01,
t test) on the same test dataset (Fig. 4D and fig. S2B). Local STP had
little help in achieving higher accuracy, because the test error rate
(14.30 ± 0.12%; SD, n= 5) when both STP and SBP were present was
similar to that found when STP was absent (14.30 ± 0.13%; SD, n= 5;
fig. S2, E and H). Furthermore, SBP also reduced computational
cost from (4.47 ± 0.43) × 106 (without SBP) to (0.91 ± 0.37)× 106
(with SBP; SD, n= 5; P< 0.001, t test; Fig. 4F). Thus, the SBP elevated
accuracy (by ~1.4%) and reduced computational cost (by ~79.6%)
of SNNs. Our results also yielded higher accuracy and lowered com-
putational cost than those obtained by us using our SNN structure and
other reported plasticity-based (20) and gradient-based (14, 15, 39, 40)
algorithms for SNNs (fig. S3, C and D, and table S2).

For learning gesture recognition on DvsGesture dataset, we used
an SNN architecture comprising 1024 input neurons, 500 hidden
neurons (half excitatory and half inhibitory), and 11 output neurons

(corresponding to 11 gesture types). Detailed network parameters
are listed in table S1. The use of SBP in addition to STP and STDP
reduced the test error rate from 16.56 ± 0.16 (SD, n= 5) to 15.24 ±
0.04% (SD, n= 5; P< 0.001, t test) (Fig. 4G and fig. S2C) after train-
ing with p= 0.3 and f= 0.7 (Fig. 4H). The test error rate achieved
by SNN using SBP and STP was 15.24 ± 0.04% (SD, n= 5), which
was slightly lower than that using SBP without STP (15.41 ± 0.11%;
SD, n= 5; P< 0.01, t test) (fig. S2, F and I). Furthermore, the compu-
tational cost for SNNs was (0.92 ± 0.03) ×107 and (1.53 ± 0.40) × 107,
with and without SBP, respectively (SD, n= 5; P< 0.001, t test; Fig. 4I).
Hence, the SBP elevated SNN’s accuracy (by ~1.3%) and reduced
SNN’s computational cost (by ~39.9%). Our results also yielded higher
accuracy and lowered computational cost than that obtained by us
using reported plasticity-based (20) and gradient-based (14, 15, 39–41)
SNN algorithms on our network architecture (fig. S3, E and F, and
table S2). In summary, the introduction of SBP during training for
three benchmark tasks elevated the efficiency of SNNs by increasing
the accuracy (up to 1.4%) and greatly reducing the computational
cost (up to 79.6%).

SBP improved the efficiency of ANNs for three benchmark tasks
For learning hand digit recognition, we used an RBM network com-
prising 784 input neurons, 500 hidden neurons, and 10 output neu-
rons. Other related key parameters are shown in table S1. We trained
the RBM with a subset (60,000) of the MNIST dataset and tested the
accuracy of the RBM during the course of learning with a separate
subset (10,000) from the data. We compared the error rates for two
types of training: First, only BP (BP1 + BP2) was used in all stages of
wake phase, and second, SBP was introduced (BP1 + SBP) in wake
phase I. We found that the error rate gradually reduced in nearly
identical manner as the training proceeded (fig. S2J). After 100 epochs
of training with wake phase I including BP1+ SBP, the test error rate
reached 2.11 ± 0.08% (SD, n=5), a value lower (~0.31% improve-
ment) than that obtained with 100 epochs of training with BP only
(BP1 + BP2 in both wake phase I and phase II) (2.42 ± 0.13%; SD, n=
5; P< 0.001, t test; Fig. 5A). We further examined the dependence
of RBM performance difference (∆% accuracy during the test; top
panel in Fig. 5B) on the number of iterations during sleep and wake

Algorithms FF1

SBP

BP O(mn)

STDP/Hebb

TP/RP

BPTT

B

Training epochs

E
rr
or
 ra

te

A

Lower bound

Mean epoch of

Range of N
defined error rates

Mean epoch of

0f

Upper bound

The maximally acceptable error rate

2 ()f x

1 ()f x

Epoch i i+1

Algorithmic complexity
per epoch

FF2 FB2FB1

O(nk) O(kn) O(nm)

O(mn) O(nk) ----

O(mn) O(nk) O(kn) O(km)

O(mn) O(nn + nk) O(kn + nn) O(nm)

O(mn) O(nk) O(kn) O(n)

m n k

FF1 FF2

FB2 FB1

In Out

n

0

Fig. 3. The computational cost during learning. (A) Diagram depicting calculation of the mean epoch in N training epochs (N= 5) for curves of f1(x) and f2(x) to achieve
some defined error rate levels between an upper bound and a lower bound. The upper bound and lower bound represent the lowest and highest values of the error rate
curves at the beginning and the end of learning epochs, respectively, among the algorithms under comparison (see Materials and Methods for more details). The compu-
tational cost was calculated by averaging the cost at five error rate levels (including upper and lower bounds). (B) Algorithmic complexity O(∙) in each epoch during
learning. It includes feedforward propagation (FF) and feedback propagation (FB). m, n, and k are numbers of neurons in network’s input, hidden, and output layers,
respectively. The compared algorithms include BP, STDP (or Hebb), direct target propagation (TP) (49), reward propagation (RP) (39), BPTT (12), and SBP.

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

5 of 11

phases (Ns and Nw) for each training epoch, which is directly related
to the computational cost (bottom panel in Fig. 5B). By varying Ns
and Nw from 1 to 26 with increments of 5, we obtained an accuracy
difference map (∆Acc) for the RBM performance with and without
SBP for different combinations of Ns and Nw. We found that a broad
distribution of Ns and Nw could yield higher accuracy by training
with SBP in the wake phase, and the optimal pair of Ns and Nw to
achieve the highest benefit was 11 and 6, respectively. We further
estimated the computational cost difference of training RBM with
and without SBP at these optimal values of Ns and Nw. The result
showed that the computational cost for training with SBP [(0.57 ±
0.01) × 107; SD, n= 5] was substantially lower (a ~57.1% reduction)
than that for training with BP only [(1.33 ± 0.03) × 107; SD, n=5;
P< 0.001, t test; Fig. 5C].

For learning phonetic transcription, we used an RBM network
comprising 189 input neurons, 500 hidden neurons, and 26 output
neurons. Other related key parameters are shown in table S1. We
trained the RBM with a subset (5033) of the NETtalk dataset and
tested the accuracy of the RBM using a separate subset (500) from
the NETtalk dataset during the course of learning. We found that
the final converged error rates were similar with and without SBP
for the training set (fig. S2K) and significantly lower for the test set
for training with SBP (16.99 ± 0.28%), as compared to that without
SBP (17.59 ± 0.64%; SD, n= 5; P= 0.002, t test) (Fig. 5D), represent-
ing ~0.6% improvement. Notably, the error rates converged much
faster during the training with SBP for both the training and test
datasets. This result showed that the introduction of SBP resulted in
a lower error rate during both training and test, implicating higher

A

C

D

F

G

I

B E H

Fig. 4. SBP improved the performance of SNNs in three benchmark tasks. (A to C) Performance of SNNs for the hand digit recognition task using the MNIST dataset.
(A) The SBP-improved SNN achieved higher test accuracy compared with that obtained without SBP (both with the same STDP, STP, and homeostatic V adjustment). Arrows
point to the error rates of upper bound and lower bound, respectively, for comparing the computational cost. (B) Accuracies of SNNs using pairs of percentage factor (p)
and fraction factor (f). The same pair of parameters (p= 0.3 and f= 0.7) was selected for a relatively better network performance (dashed circles) in all three tasks. The
accuracy is coded in color by the scale shown on the right. (C) The SNN using SBP improved accuracy and reduced the computational cost [at error rates defined by
arrowheads in (A)] compared to that found without SBP. (D to F) Performance of SNNs for the phonetic transcription task, presented in the same manner as that in (A) to
(C). (G to I) Performance of SNNs for the gesture recognition task using the DvsGesture dataset presented in the same manner as that in (A) to (C). All figures are averaged
over five repeating experiments with different random seeds.

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

6 of 11

network efficiency. Furthermore, the difference matrix of RBM
with SBP learning also showed a broad distribution of Ns and Nw that
yielded higher accuracy (top panel in Fig. 5E) and lower computa-
tional cost (bottom panel in Fig. 5E) compared to that without SBP,

with optimal Ns and Nw values of 16 and 6, respectively. The use of
SBP at these optimal Ns and Nw values reduced the computational
cost by ~36.0% [from (2.28 ± 0.17) × 106 to (1.46 ± 0.04) ×106; SD,
n= 5; P< 0.001, t test] (Fig. 5F).

B HE

A GD

C F I
× × ×

Fig. 5. SBP improved RBM performance in three benchmark tasks. (A to C) Performances of three-layer RBMs for hand digit recognition task. (A) Progressive reduction
of the error rate (percentage of error trials) for the test dataset during RBM learning (see fig. S2, J to L, for error rates of three training datasets) with BP alone (blue) and
with the addition of SBP (red) during the wake phase. Each curve consisted of 100 epochs of training that alternated between sleep and wake phases (see Fig. 2B). Arrows
point to the error rates of upper bound and lower bound, respectively, for comparing the computational cost. (B) Dependence of RBM efficiency on training computa-
tional cost in sleep and wake phases. The gain in accuracy (upper) or computational cost (lower) of the RBM performance after training was indicated by the difference of
accuracy (∆Acc) or cost (∆Cost) obtained by training with and without SBP, and was plotted against the number of epochs during the sleep phase (Ns) and wake phase
(Nw). The Ns and Nw values between 1 and 26 (with an increment of 5) were used. Optimal Ns and Nw, in terms of the gain in both accuracy and cost, were marked by white
stars and chosen for presentation in (C). (C) Summary histograms on the average of maximal accuracy and computational costs marked by arrowheads in (A) at the opti-
mal Ns and Nw chosen from the matrix in (B). (D to I) Performance of RBM for phonetic transcription task (D to F), and gesture recognition task (G to I), presented in the
same manner as that in (A) to (C). (G) Early stopping was given at the 60th epoch for the test convergence.

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

7 of 11

For learning gesture recognition, the dataset was first reduced in
size from 128 × 128 pixels to 32 × 32 pixels by a preprocessing pro-
cedure (see Materials and Methods for details) to fit the relatively
low number of neurons in our three-layer RBM, which comprised
1024 input neurons, 500 hidden neurons, and 11 output neurons.
We trained the RBM with a subset (1176) of DvsGesture data and
tested the accuracy of RBM using a separate data subset (288) during
the course of learning. We found that training with SBP yielded an
error rate slightly lower than that of the training without SBP at the
end of 100 training epochs (fig. S2L). For test set, the error rate be-
came much lower for training with SBP than without SBP after
60 epochs of training. At the 50th epoch, the error rate for recognizing
the test set reached the minimum of 29.12 ± 1.82% (SD, n= 5) for
the network trained with SBP, a value significantly lower than that
obtained without SBP (33.33 ± 1.48%; SD, n= 5; P< 0.01, t test)
(Fig. 5G), representing ~4.2% improvement. The difference matrix
at the 50th training epoch also showed a broad distribution of higher
accuracy (top panel in Fig. 5H) and lower computational cost
(bottom panel in Fig. 5H) for different combinations of Ns and Nw,
with the optimal values of 16 and 11, respectively. The computa-
tional cost for training with SBP [(1.12 ± 0.04)×107] was also lower
than that without SBP [(4.35 ± 0.01) × 107; SD, n= 5; P< 0.001, t test],
representing ~74.3% reduction of the computational cost (Fig. 5I).
In summary, we found that when SBP was introduced into the
training of RBM, a type of ANNs, the performance on all three bench-
mark tests was improved to varying extents by reducing both the
error rate (up to 4.2%) and computational cost (up to 74.3%).

DISCUSSION
In this work, we have introduced SBP of synaptic modification into
SNNs and ANNs and examined its benefit for learning three bench-
mark tasks. For simplicity, we used three-layer feedforward networks
comprising a variable number of neurons in the input, hidden, and
output layers, depending on the task. The learning of the SNN con-
sisted of two independent phases: first, the unsupervised learning
phase of homeostatic adjustment of the membrane potential that
maintained the firing capacity of the SNN and STP, which was
found to be helpful in elevating the network efficiency (fig. S2, D
to I), and second, the supervised learning phase that used STDP to
initiate the correct and error signals in the form of potentiation and
depression, respectively, and SBP for cross-layer synaptic weight
adjustments. These SBP signals were generated by algebraic sum-
mation of synaptic changes based on the relative timing of all pairs
of pre- and postsynaptic spikes using the standard pairwise STDP
rule (42). Although not introduced in this study, additional constraints
imposed by other STDP rules for natural spike trains in pre- and
postsynaptic neurons (43, 44) may further improve the network
capability. Furthermore, other forms of nonlocal spread of synaptic
modifications besides SBP, such as presynaptic lateral spread of
LTP/LTD to synapses made by axon collaterals of the same pre-
synaptic neurons (26, 30) and to other converging inputs on the
postsynaptic neuron (28, 29), could be further explored for their
potential benefits for SNNs.

For ANNs, we have examined the benefit of introducing SBP
into the training of RBM, using its special feature of separating the
training into supervised and nonsupervised phases. We have also
examined multilayer spiking-MLP models and found similar bene-
fits (fig. S4D). In supervised wake phase of RBM, the standard

synaptic weight update was mostly based on the BP of error signals
toward the minimization of the global loss function. Adding SBP
would disturb the supervised tuning of the direction of the BP-
induced gradient. A similar situation was found when Hebb’s rule
was added directly into BP (45). Perturbation of BP-induced synaptic
weight updated by SBP could help drive the network modification
toward an alternative direction, where the RBM may attain a higher
accuracy with lower computational cost.

Only simple three-layer ANNs were used in the present study for
all benchmark tests. Our studies on the SNN with four to six layers,
using SBP in all hidden layers, showed that the benefit of introduc-
ing SBP was greatly degraded to a level below that achieved by the
three-layer SNN. Training of RBM with four to six layers, with the
SBP replacing BP in all hidden layers during wake phase I training,
yielded no improvement in accuracy beyond that achieved by the
three-layer RBM, despite higher computational costs (fig. S4, A and B).
The degradation of accuracy in SNNs with more than three layers
may be attributed to excessive spread of potentiation or depression
signals when SBP was allowed to occur beyond the neuron that
generates the original synaptic modification. In addition, the failed
learning of SNNs using SBP for higher layers might also be caused
by the nonconvergence problem of synaptic modifications. The
previous work has shown that the recurrent SNN contains exploding
gradients (16). The SNNs using SBP also show a nonconvergence
learning problem, especially for deeper ones (fig. S4A), where the
synaptic modifications between input and hidden layers are domi-
nated by the STDP in hidden and output layers, and the influence of
SBP from the induction layer to backpropagated layers is progres-
sively weaker. This hypothesis was further verified in fig. S4C, where
the distribution of synaptic modifications in three (or four) layers
was properly norm-distributed, while that in five (or six) layers is
left the same as that in initialization. Biologically experimental re-
sults of SBP in a network containing hippocampal neurons are con-
sistent with this phenomenon, where the SBP also fails to propagate
beyond one layer to more upstream neurons (30). The biological
interpretation of this failure is that the potentiation/depression at
input synapses due to SBP is based on cellular mechanisms distinctly
different from those underlying LTP/LTD at the output synapses,
thus incapable of generating further SBP in more upstream neurons.
Notably, in some regions of the nervous system, such as retina,
hippocampus, or neocortex, information processing could largely
be characterized as a three-layer network operation within the
region. Our finding that three-layer ANNs appear to be the optimal
network to implement SBP suggests that ANNs may benefit from the
use of three-layer networks as relatively independent basic modules,
and more sophisticated ANNs could be built via parallel and serial
connections among them.

In considering the efficiency of ANNs in performing standard
benchmark tasks, previous studies using a variety of ANNs have
largely focused on the accuracy in recognizing the test samples after
network training. In this study, we have examined both the accuracy
and the computational cost in learning tasks. Notably, the reduction
of the computational cost represents the major benefit conferred by
introducing SBP in both SNNs and ANNs. In estimating the com-
putational cost, we used the product of the mean training epoch to
achieve some defined accuracy levels (Fig. 3A) and algorithmic
complexity per epoch (Fig. 3B) as an indicator. Other aspects of the
cost, including the number of arithmetic operations and the number
of bits required to specified synaptic weights and neuronal states

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

8 of 11

within each iteration, were not included here but could be further
considered in the future work. In addition, we compared the com-
putational cost during training in reaching the same given accuracy
levels, rather than those for attaining the final converged accuracy
by each operation. In most operations, the small increment in the
final accuracy often requires disproportional large amount of com-
putation. For efficient performance of the network, relatively high
rather than the highest accuracy could be sufficient. The notion of
balanced computational cost and accuracy is in line with the efficient
information processing of the brain, where the rapidity in computa-
tion (with low energy cost) is as relevant as the accuracy.

Last, we note that the original experiment demonstrating SBP in
cultured networks of hippocampal neurons (26) was inspired by the
power of BP algorithm, although it seems to be biologically implausible
(46). The SBP-associated information flow occurs in the neuronal
cytoplasm, via retrograde fast axonal transport of molecular signals
(28, 29). The finding of SBP in natural networks has shown that an
effective machine learning algorithm for ANNs can spur neuro-
science discovery, and the present study further demonstrates that
introducing algorithm-inspired biological discovery back to ANNs
further elevates their efficiency. Such two-way interactions be-
tween neuroscience and artificial intelligence have much in store
for the future.

MATERIALS AND METHODS
Definition of computational cost during training
The computational cost (Costi) of the algorithm i during training is
defined by the product of the mean epoch number to achieve a de-
fined error level (Fig. 3A) and a value O(n)i representing the algo-
rithmic complexity per epoch (Fig. 3B). For the comparison of two
algorithms (i= 1,2), the computational cost is calculated as follows

	​​ Cost​ i​​  = ​  1 ─ N ​ ​ ∑ 
l=1

​ 
N

 ​​Argmin(​f​ i​​(x ) = ​Err​ l​​ ) × O ​(n)​ i​​​	 (1)

where Argmin(∙) is the argument of the minimum, fi(x) is the error
rate curve with input epoch x, O(n)i is the algorithmic complexity
with n depicting the number of parameters, and N is the number of
predefined error levels (N= 5). Errl is selected out from a range of
error rates, with a lower bound of Max(Min (f1), Min (f2)), defined
as the relatively higher minimal error rates of f1(x) and f2(x), and also
with an upper bound of Min(Max (f1), Max (f2), f0), defined as the
relatively lower maximal error rates among f1(x), f2(x), and an addi-
tionally predefined error f0 (the maximally acceptable error rate).

Preprocessing of datasets
For the MNIST dataset, the raw data were processed with normal-
ization (i.e., subtract the minimum and divide by the range) and
repeated T times to generate Iraw(t). For the NETtalk dataset, Iraw(t)
was directly given by auditory signals. Then, input spike train Ispikes(t)
was generated from Iraw(t) for these two datasets, shown as follows

	​​ ​I​ spikes​​(t ) = ​{​​​1​ 0​ ​
if (​I​ raw​​(t ) ≥ ​ I​ rd​​(t ) )​  
if (​I​ raw​​(t ) < ​ I​ rd​​(t ) )

 ​​​	 (2)

where Ird(t) is a uniformly sampled random number from 0 to 1. For
the DvsGesture dataset, the raw signals were already event based; hence,
an additional preprocessing for spike coding was not necessary.

The learning procedure of SNNs
For simplicity, we use i, j, and k to represent the indices of neurons
in input, hidden, and output layers, respectively. The approximate
pathway of information propagation and plasticity propagation in
SNN is shown as follows

	​​ 

​​


  ​​Δ ​W​i,j​ SBP​(t) 


​​ 
SBP

​ ​  ← ​ ​ Δ ​W​j,k​ STDP​(t) 


​​ 
STDP,Dale’slaw

​​​​​  

Plasticity propagation

 ​  ←

​   

​​


    ​​​V​j​ E​(t ) , ​V​k​ E​(t) 


​​ 
Homeo−V

​ ​  + ​​​V​j​ F​(t ) , ​V​k​ F​(t) 


​​ 
LIFpropagation

​ ​  ← ​​​ I​ syn​​ 
⏟

​​ 
STP

​ ​  ← ​​​ I​ spikes​​(t) 
⏟

​​ 
Input

​ ​​​​    

Information propagation

 ​

​​	 (3)

where the plasticity induction is calculated on ∆Wj, k between the
hidden and output layers by STDP first and then propagated to
∆Wi, j between the input and hidden layers. Each procedure will be
further described in the following subsections.

The STP in SNNs
For the local STP, we allow the amplitude of postsynaptic potential
to increase (facilitation) or decrease (depression) when the spiking
frequency is low or high, respectively. This is described by the equa-
tions below, following the formulation of previous studies (19, 31)

	​​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​ 

∣ ​ du ─ dt ​  =  − ​ u ─ ​​ f​​ ​ + U(1 − u ) ​I​ spikes​​(t)

​   ∣ ​  dx ─ dt ​  = ​  1 − x ─ ​​ d​​ ​  − ​uxI​ spikes​​(t) ​   

∣ ​ 
​I​ syn​​

 ─ dt ​  =  − ​ 
​I​ syn​​

 ─ ​​ s​​ ​  + ​AW​ i,j​​ ​uxI​ spikes​​(t)

​​​	 (4)

where u and x are normalized variables representing dynamical
characteristics of synaptic facilitation and depression, respectively.
f and d are recovery time constants for facilitation and depression,
respectively. A is an adjustable constant for synaptic weight Wi, j. s
is recovery time for synaptic current Isyn, which is used together with
Eq. 5 for introducing STP into SNNs.

The LIF propagation in SNNs
In the LIF neuron model, the spikes in presynaptic neurons trigger
postsynaptic potentials, which are dynamically integrated and gen-
erate spikes in the postsynaptic neuron when the firing threshold is
reached. A refractory period is used after each spike. The membrane
potential V(t) is calculated as follows

	​​ ​ m​​ ​ dV(t) ─ dt ​  =  − (V(t ) − ​V​ L​​ ) − ​ 
​g​ E∣I​​ ─ ​g​ L​​ ​ (V(t ) − ​V​ E∣I​​ ) + ​ 

​I​ syn​​
 ─ ​g​ L​​ ​​	 (5)

where m = Cm/gL, Cm is a constant representing membrane capaci-
tance, VL is the leaky potential, gL is the leaky conductance, gE ∣ I
represents excitatory conductance (gE) or inhibitory conductance (gI),
Isyn is the postsynaptic current, and VE ∣ I represents reversal poten-
tials for excitatory (VE) or inhibitory (VI) neurons. The membrane
potential V(t) will be reset on threshold crossing (VTr) and clamped
to the resting potential Vrest during the refractory period ref. The
membrane potential V(t) in the feedforward phase will be repre-
sented as VF(t).

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

9 of 11

The homeostatic V adjustment in SNNs
To circumvent the problem of nondifferentiable membrane poten-
tial with spikes in SNNs, we use a previous balanced tuning approach
(20, 33) for the homeostatic adjustment of Vj(t). The network state
is presented by the energy function ​​E​j​ SNN​​ as follows

	​​ E​j​ SNN​ = ​ ​ a​​ ​V​ j​​ ​(t)​​ 2​ + ​​ b​​ ​∑ 
i
​ 

N
 ​​(​V​ i​​(t ) ​W​ i,j​​ ​V​ j​​(t ) ) + ​​ c​​ ​V​ j​​(t)​	 (6)

With a = 0.5, b = −1, c = − VTr, ​​
∂ ​E​j​ SNN​

 _ ∂ ​V​ j​​(t) ​​ is obtained as follows

	​​​ 
∂ ​E​j​ SNN​

 ─ ∂ ​V​ j​​(t) ​  = ​ V​ j​​(t ) − ​(​​​∑ 
i
​ 

N
 ​​(​V​ i​​(t ) ​W​ i,j​​ ) − ​V​​ Tr​​)​​  = ​ V​ j​​(t ) − ​V​ j​​(t + 1)​​	 (7)

which represents temporal differential of the network state with
respect to differential of membrane potential state of postsynaptic
neuron j between its current state Vj(t) and its future state Vj(t + 1).
The tuning direction of ∆Vj(t) will converge toward its stable state
by ​∆ ​V​j​ E​(t)​ with learning rate e, as follows

	​​  ​V​j​ E​(t ) = − ​​​ e​​(​​ ​V​ j​​(t ) − ​(​​​∑ 
i
​ 

N
 ​​ ​V​ i​​(t ) ​W​ i,j​​ − ​V​​ Tr​​)​​​)​​​​	 (8)

For the total change of membrane potential, ∆Vj(t) is obtained
as follows

	​​  ​V​ j​​(t ) = ​ ​t​ e​​ ─ ​T​ e​​
 ​  ​V​j​ F​(t ) + ​(​​1 − ​ ​t​ e​​ ─ ​T​ e​​

 ​​)​​ ​V ​j​ E​(t)​​	 (9)

where ​∆ ​V​j​ F​(t)​ represents the neuron state update in the feedforward
procedure described in Eq. 5, and ​∆ ​V​j​ F​(t)​ and ​∆ ​V​j​ E​(t)​ are summed
with the weight factor ​​ ​t​ e​​ _ ​T​ e​​

​​ and ​​​(​​1 − ​ ​t​ e​​ _ ​T​ e​​
​​)​​​​, respectively. te is the lapsed

number of epochs, and Te is a total number of that during training.
As the training proceeds, the weight of ​∆ ​V​j​ F​(t)​ increases gradually
to 1, whereas that of ​∆ ​V​j​ E​(t)​ decreases to 0.

The STDP in SNNs
The teaching signal is created by repeating T times of expected spik-
ing states of output neurons. That means only target-class neurons
contain spikes, while others are left silent. The activity difference
between network-generated spike trains and teaching spike trains is
described as D and obtained as follows

	​ D = ​ ∑ 
k
​ 

K
 ​​​∑ 

t
​ 

T
 ​​ ​(​V​ k​​(t ) − (t − ​t​ s​​ ) )​​ 2​​	 (10)

It is a mean square error (MSE) distance during time T for all K
neurons in the output layer, where ts represents spiking time in the
teaching signal. To minimize D, the update of neural states Vk(t) in
output neuron k is given by the following equation

	​​  ​V​ k​​(t ) = − ​(​​​∑ 
t
​ 

T
 ​​ ​V​ k​​(t ) − (t − ​t​ s​​ ) ​)​​​​	 (11)

where  is the learning rate. The update of Vj(t) in Eq. 9 and Vk(t) in
Eq. 11 will further be consolidated into synaptic modifications during
next-step STDP. The weight adjustment at each output synapse is
calculated by the standard biphasic STDP rule (25, 27) as follows

​​ ​W​j,k​ STDP​(​t​ j,s​​, ​t​ k,s​​ ) = ​
{

​​​​
 ​W​j,k​ STDP+​  = ​ A​ +​​ ​e​​ ​

​t​ j,s​​−​t​ k,s​​ _ ​​ +​​ ​ ​
​  

 ​W​j,k​ STDP−​  =  − ​A​ −​​ ​e​​ −​
​t​ j,s​​−​t​ k,s​​ _ ​​ −​​ ​ ​

​​  ​
if (​t​ j,s​​ − ​t​ k,s​​ ≤  0)

​  
if (​t​ j,s​​ − ​t​ k,s​​ >  0)

 ​​​​	 (12)

where A+ and A− are the scaling factors, and tj, s and tk, s are the spik-
ing time of each pair of pre- and postsynaptic neurons (j and k). +
and − are the delay time parameters of the potentiation and depres-
sion, respectively. The detailed parameters are shown in table S1.

The Dale’s law in SNNs
Unlike conventional ANNs, in which the sign of synaptic output at
different synapses from the same neuron can be both positive or
negative. Here, we also follow the constraint of Dale’s law (47),
where the postsynaptic potentials of all synapses, either positive
(excitatory) or negative (inhibitory), are identical in profile but op-
posite in sign, based on the initial assignment of the neuronal type
in the hidden layer. The synaptic modifications during learning
have no limitation given that Wi, j∆Wi, j ≥ 0, but have a limitation of
∆Wi, j ∈ [−∣Wi, j∣, ∣Wi, j∣] given that Wi, j∆Wi, j< 0, to make sure that
the signs of excitatory and inhibitory synapses would not be
changed (20).

The SBP in SNNs
When STDP is induced at some specific output synapses, the synaptic
weight adjustment ​∆ ​W​j,k​ STDP+​​ and ​∆ ​W​j,k​ STDP−​​ will backpropagate with
different proportions of LTP and LTD to produce weight adjustment
of ​∆ ​W​i,j​ SBP+​​ and ​∆ ​W​i,j​ SBP−​​ at hidden layer synapses, as shown by an
example below for three hidden neurons (j= 1,2,3) and two output
neurons (k= 1, 2)

	​​ 

​Δ ​W​j,k​ STDP​  = ​ [​​​ 0.1​  − 0.2​  0​  − 0.4​  0.5​  − 0.6​​]​​ =​

​   ​​​[​​​0.1​  0​  0​ 0​  0.5​  0​​]​​ 


​​ 

Δ​W​j,k​ STDP+​(LTP)

​ ​  + ​​​[​​​  0​  − 0.2​  0​  − 0.4​  0​  − 0.6​​]​​  


​​  

Δ​W​j,k​ STDP−​(LTD)

​ ​ ​​	 (13)

where values in the matrix are obtained by Eq. 12. Positive, negative,
and zero values in the matrix indicate LTP, LTD, and no STDP, respec-
tively. Then, ​​∑ k​ ​​ ∆ ​W​j,k​ STDP+​​ is calculated by summating all ​∆ ​W​j,k​ STDP+​​
connected to hidden neuron j. The update of ​∆ ​W​i,j​ SBP+​​ and ​∆ ​W​i,j​ SBP−​​ can
be described as follows

	​  ​W​i,j​ SBP+​ =  (​​ f​​ ​E​ diag,i​​(​I​ j​​ + ​​ p​​ ​​ n​​(​∑ 
k
​ ​​ ​W​j,k​ STDP+​ ) ) )  ​W​i,j​ STDP+​​	 (14)

	​  ​W​i,j​ SBP−​ =  (​​ f​​ ​E​ diag,i​​(​I​ j​​ − ​​ p​​ ​​ n​​(​∑ 
k
​ ​​ ​W​j,k​ STDP−​ ) ) )  ​W​i,j​ STDP−​​	 (15)

where n(∙) denotes the normalization function with ​​​ n​​(x ) = ​  x _ ​∑ i​​ ​x​ i​​​
​​,

I is an all-ones vector (with Ij= 1), p is a proportional factor
(p∈[10%,100%]), f is a fraction factor (f∈[0.1,1]), and y = Ediag,

i(x) denotes the function of expanding a vector x to a diagonal ma-
trix y with yj, j = xj.

The learning procedure of the RBM
For a three-layer RBM, the network states at input, hidden, and out-
put layers are represented as ui, uj, and uk, respectively. The infor-
mation propagation and plasticity propagation in the RBM is shown
as follows

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

10 of 11

	​​
​​


   ​​Δ ​W​i,j​ SBP​ 
⏟

​​ 
SBP

​ ​  ← ​ ​ Δ ​W​j,k​ BP​ 
⏟

​​ 
BPinduction

​​  ← ​​​ C​​ RBM​ 
⏟

​​ 
Loss

​ ​  + ​​​E​​ RBM​ 
⏟

​​ 
Energy

​ ​​​​   

Plasticity propagation

 ​  ←
​   

​ ​   ​ ​​ u​ j​​, ​u​ k​​ 
⏟

​​ 
Propagation

​​  ← ​ ​​ u​ i​​ 
⏟

 ​​ 
Input

​​​​​  
Informationpropagation

​

 ​​	 (16)

where the synaptic modifications between input and hidden layers
(∆Wi, j) are constrained by that between hidden and output
layers (∆Wj, k).

The loss function in RBM
The loss function of RBM is defined as the standard MSE, shown
as follows

	​​ C​​ RBM​  = ​  1 ─ 2 ​ ​ ∑ 
k=1

​ 
K

  ​​ ​(​u​ k​​ − ​o​ k​​)​​ 2​​	 (17)

where cost is the difference of output uk and expected teaching out-
put ok. For the RBM using pure BP, the synaptic weight adjustment
​∆ ​W​j,k​ BP​​ and ​∆ ​W​i,j​ BP​​ can be calculated by the differential chain rule
as follows

	​​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​
 ​W​j,k​ BP​  =  − ​​ bp​​ ​ ∂ ​C​​ RBM​ ─ ∂ ​W​ j,k​​ ​

​  
 ​W​i,j​ BP​  =  − ​​ bp​​ ​ ∂ ​C​​ RBM​ ─ ∂ ​W​ i,j​​

 ​
 ​​​	 (18)

where bp is the learning rate.

The energy function in RBM
The SBP is implemented by a linear relationship between ∆Wj, k and
∆Wi, j. We apply a special energy function ERBM to constrain this
linear relationship during training via the following equation

	​​
​E​​ RBM​ =  ((​∑ 

i,j
​ ​​ ​u​ i​​(t ) ​W​ i,j​​ ​u​ j​​(t ) ) + (​∑ 

i
​ ​​ ​ (​u​ i​​(t ) )​​ 2​ ) )

​    
+ ​​ sbp​​((​∑ 

j,k
​ ​​ ​u​ j​​(t ) ​W​ j,k​​ ​u​ k​​(t ) ) + (​∑ 

j
​ ​​ ​ (​u​ j​​(t ) )​​ 2​ ) )

 ​​	 (19)

where sbp is scalar variable for setting the influence of SBP. The total
cost function for RBM using SBP is shown as follows

	​​ C​ loss​​ =   ​C​​ RBM​ + ​E​​ RBM​​	 (20)

where  is a decay factor.

The SBP in RBM
When SBP is introduced, we replace BP at ∆Wi, j at some iterations
(during wake phase I) as follows

	​  ​W​i,j​ SBP​ = ​ ​ SBP​​ ​​ f​​ ​E​ diag,i​​(​I​ j​​ + ​​ s​​(​​ p​​ ​∑ 
k
​ ​​ ​W​j,k​ BP​ ) ) ​u​ i​​ ​u​ j​​​	 (21)

where SBP is a learning rate, ​∆ ​W​i,j​ SBP​  ∈​[0,2SBPuiuj], I is an all-ones
vector (Ij= 1), Ediag, i(∙) is the same function with that used in SNNs,
s denotes sigmoid nonlinear activation function, p is a proportional
factor (p∈ [10%,100%]), and f is a fraction factor (f ∈ [0.1,1]).
The inclusion of the term uiuj constrains the ​∆ ​W​i,j​ SBP​ ​to the synapses

made by coactive input and hidden neurons in the spirit of Hebbian
learning (25).

Learning in the spiking-MLP
Spiking-MLP is an MLP of ANN after replacing activation functions
with LIF neurons, which is also a special type of SNNs. i, j, and k are
neuron indices of input, hidden, and output layers, respectively.
Spiking-MLP applies feedforward information propagation through
a simpler version of LIF neurons, shown as follows

	​​ V​ j​​(t ) = ​g​ j​​ ​V​ j​​(t − 1 ) (1 − ​S​ j​​(t − 1 ) ) + ​I​ j​​(t)​	 (22)

where Sj(t − 1) is the firing state after membrane potential Vj(t − 1)
reaching a firing threshold Vth, becoming 1 when Vj(t) ≥ Vth or else
0 for Vj(t) < Vth. Ij(t) is input current with the simple format of
​​I​ j​​(t ) = ​∑ i​ ​​ ​W​ i,j​​ ​S​ i​​(t)​. gj is a leaky item [gj∈ (0,1)]. During learning, the
input signal from datasets is first encoded into spike trains (the same
as that in previous SNNs) in a time window T. After feedforward
propagation of spikes, the average firing rates of neurons during T
in output layers are used for classification and regression. MSE CMLP
and energy function EMLP are integrated together as the loss func-
tion via the following function

	​​ C​​ MLP​ = ​  1 ─ 2K ​ ​ ∑ 
k=1

​ 
K

  ​​ ​​(​​ ​ 1 ─ T ​ ​ ∑ 
t=1

​ 
T
 ​​ ​S​ k​​(t ) − ​o​ k​​​)​​​​ 

2

​​	 (23)

where ok is the expected firing rate and K is the total number of
output layers. EMLP is the same as ERBM in Eq. 19 but using spikes
Si(t), Sj(t), and Sk(t) instead of firing rates ui(t), uj(t), and uk(t). Other
calculations of Closs and ​∆ ​W​i,j​ SBP​​ are the same as those in Eqs. 20 and
21. The p-BP (11, 40) is used for getting around the nondifferential
feature of spiking-MLP during training by directly giving an approxi-
mate finite number (here is 1 for simplicity) to replace the infinite
gradient (at a neighborhood of Vth) during the gradient BP.

Accuracy definition
In our experiments, the accuracy of MNIST or DvsGesture is defined
as the number of correctly identifying samples dividing by the
number of all samples. Different from it, the accuracy of NETtalk is
defined as the cosine similarity distance of identified phonemes and
real phonemes for the consideration of the multiphonemes in the
same sample.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abh0146

REFERENCES AND NOTES
	 1.	 D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-

propagating errors. Nature 323, 533–536 (1986).
	 2.	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
	 3.	 G. E. Hinton, P. Dayan, B. J. Frey, R. M. Neal, The “wake-sleep” algorithm for unsupervised

neural networks. Science 268, 1158–1161 (1995).
	 4.	 S. Z. Muller, A. N. Zadina, L. F. Abbott, N. B. Sawtell, Continual learning in a multi-layer

network of an electric fish. Cell 179, 1382–1392.e10 (2019).
	 5.	 H. Jaeger, Artificial intelligence: Deep neural reasoning. Nature 538, 467–468

(2016).
	 6.	 G. Zeng, Y. Chen, B. Cui, S. Yu, Continual learning of context-dependent processing

in neural networks. Nat. Mach. Intell. 1, 364–372 (2019).
	 7.	 W. Maass, Networks of spiking neurons: The third generation of neural network models.

Neural Netw. 10, 1659–1671 (1997).

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

https://science.org/doi/10.1126/sciadv.abh0146
https://science.org/doi/10.1126/sciadv.abh0146

Zhang et al., Sci. Adv. 2021; 7 : eabh0146 20 October 2021

S C I E N C E A D V A N C E S | R E S E A R C H A R T I C L E

11 of 11

	 8.	 L. F. Abbott, B. DePasquale, R. M. Memmesheimer, Building functional networks
of spiking model neurons. Nat. Neurosci. 19, 350–355 (2016).

	 9.	 W. Nicola, C. Clopath, Supervised learning in spiking neural networks with FORCE
training. Nat. Commun. 8, 2208 (2017).

	 10.	 E. O. Neftci, H. Mostafa, F. Zenke, Surrogate gradient learning in spiking neural networks:
Bringing the power of gradient-based optimization to spiking neural networks. IEEE Sig.
Process. Mag. 36, 51–63 (2019).

	 11.	 C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, K. Roy, Enabling spike-based backpropagation
for training deep neural network architectures. Front. Neurosci. 14, 119 (2020).

	 12.	 D. Huh, T. J. Sejnowski, Advances in Neural Information Processing Systems (Curran
Associates Inc., 2018), vol. 31, pp. 1433–1443.

	 13.	 S. M. Bohte, J. N. Kok, H. La Poutre, Error-backpropagation in temporally encoded
networks of spiking neurons. Neurocomputing 48, 17–37 (2002).

	 14.	 G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, W. Maass, A solution
to the learning dilemma for recurrent networks of spiking neurons. Nat. Commun. 11,
3625 (2020).

	 15.	 S. Jia, T. Zhang, X. Cheng, H. Liu, B. Xu, Neuronal-plasticity and reward-propagation
improved recurrent spiking neural networks. Front. Neurosci. 15, 654786 (2021).

	 16.	 R. Kim, Y. Li, T. J. Sejnowski, Simple framework for constructing functional spiking
recurrent neural networks. Proc. Natl. Acad. Sci. U.S.A. 116, 22811–22820 (2019).

	 17.	 S. Song, K. D. Miller, L. F. Abbott, Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).

	 18.	 F. Zenke, E. J. Agnes, W. Gerstner, Diverse synaptic plasticity mechanisms orchestrated
to form and retrieve memories in spiking neural networks. Nat. Commun. 6, 6922 (2015).

	 19.	 R. S. Zucker, Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).
	 20.	 T. Zhang, Y. Zeng, D. Zhao, B. Xu, Brain-inspired balanced tuning for spiking neural

networks, in Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence (IJCAI, 2018), pp. 1653–1659.

	 21.	 T. J. Teyler, P. DiScenna, Long-term potentiation. Annu. Rev. Neurosci. 10, 131–161 (1987).
	 22.	 T. V. Bliss, G. L. Collingridge, A synaptic model of memory: Long-term potentiation

in the hippocampus. Nature 361, 31–39 (1993).
	 23.	 M. Ito, Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989).
	 24.	 Y. Dan, M. M. Poo, Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30

(2004).
	 25.	 Y. Bengio, T. Mesnard, A. Fischer, S. Zhang, Y. Wu, STDP-compatible approximation

of backpropagation in an energy-based model. Neural Comput. 29, 555–577 (2017).
	 26.	 R. M. Fitzsimonds, H. J. Song, M. M. Poo, Propagation of activity-dependent synaptic

depression in simple neural networks. Nature 388, 439–448 (1997).
	 27.	 G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited.

Annu. Rev. Neurosci. 24, 139–166 (2001).
	 28.	 J. L. Du, H. P. Wei, Z. R. Wang, S. T. Wong, M. M. Poo, Long-range retrograde spread of LTP

and LTD from optic tectum to retina. Proc. Natl. Acad. Sci. U.S.A. 106, 18890–18896
(2009).

	 29.	 J. L. Du, M. M. Poo, Rapid BDNF-induced retrograde synaptic modification in a developing
retinotectal system. Nature 429, 878–883 (2004).

	 30.	 H.-Z. W. Tao, L. I. Zhang, G.-Q. Bi, M.-M. Poo, Selective presynaptic propagation
of long-term potentiation in defined neural networks. J. Neurosci. 20, 3233–3243
(2000).

	 31.	 M. Tsodyks, K. Pawelzik, H. Markram, Neural networks with dynamic synapses. Neural
Comput. 10, 821–835 (1998).

	 32.	 P. U. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015).

	 33.	 T. Zhang, Y. Zeng, D. Zhao, M. Shi, A plasticity-centric approach to train the non-
differential spiking neural networks, in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI, 2018).

	 34.	 B. Scellier, Y. Bengio, Equilibrium propagation: Bridging the gap between energy-based
models and backpropagation. Front. Comput. Neurosci. 11, 24 (2017).

	 35.	 Y. LeCun, The MNIST database of handwritten digits (1998); http://yann.lecun.com/exdb/mnist/.

	 36.	 T. J. Sejnowski, C. R. Rosenberg, Parallel networks that learn to pronounce English text.
Complex Syst. 1, 145–168 (1987).

	 37.	 A. Amir, B. Taba, D. Berg, T. Melano, J. Mckinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos,
G. Garreau, M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T. Delbruck, M. Flickner, D. Modha,
A low power, fully event-based gesture recognition system, in Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2017), pp. 7243–7252.

	 38.	 H. Hazan, D. Saunders, D. T. Sanghavi, H. Siegelmann, R. Kozma, Unsupervised learning
with self-organizing spiking neural networks, in Proceedings of the 2018 International Joint
Conference on Neural Networks (IJCNN) (IEEE, 2018), pp. 1–6.

	 39.	 T. Zhang, S. Jia, X. Cheng, B. Xu, Tuning convolutional spiking neural network
with biologically plausible reward propagation. IEEE Trans. Neural Netw. Learn. Syst.
(2021).

	 40.	 S. Wozniak, A. Pantazi, T. Bohnstingl, E. Eleftheriou, Deep learning incorporating
biologically inspired neural dynamics and in-memory computing. Nat. Mach. Intell. 2,
325–336 (2020).

	 41.	 Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-temporal backpropagation for training
high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018).

	 42.	 G. Q. Bi, M. M. Poo, Synaptic modifications in cultured hippocampal neurons:
Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci.
18, 10464–10472 (1998).

	 43.	 R. C. Froemke, Y. Dan, Spike-timing-dependent synaptic modification induced by natural
spike trains. Nature 416, 433–438 (2002).

	 44.	 K. Kobayashi, M. M. Poo, Spike train timing-dependent associative modification
of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41, 445–454 (2004).

	 45.	 T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, G. Hinton, Backpropagation
and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).

	 46.	 F. Crick, The recent excitement about neural networks. Nature 337, 129–132 (1989).
	 47.	 T. Hokfelt, O. Johansson, M. Goldstein, Chemical anatomy of the brain. Science 225,

1326–1334 (1984).
	 48.	 T. P. Lillicrap, D. Cownden, D. B. Tweed, C. J. Akerman, Random synaptic feedback

weights support error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016).
	 49.	 A. Meulemans, F. S. Carzaniga, J. Suykens, J. Sacramento, B. F. Grewe, A theoretical

framework for target propagation, in Advances in Neural Information Processing Systems,
H. Larochelle, M. A. Ranzato, R. Hadsell, M.-F. Balcan, H.-T. Lin, Eds. (Curran Associates Inc.,
2020), vol. 33, pp. 20024–20036.

Acknowledgments: We thank M. Shi for refining Fig. 1 and fig. S1. Funding: This work was
supported by the National Key R&D Program of China (2020AAA0104305); the National
Natural Science Foundation of China (61806195); the Strategic Priority Research Program of
the Chinese Academy of Sciences (XDA27010404 and XDB32070000); the Key Research
Program of Frontier Sciences, Chinese Academy of Sciences (QYZDY-SSW-SMCO01); the
International Partnership Program of Chinese Academy of Sciences (153D31KYSB20170059);
the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05); and the
Shanghai Key Basic Research Project (18JC1410100). Author contributions: B.X., T.Z., Y.Z., and
M.-m.P. designed the study. T.Z., B.X., X.C., and S.J. performed the experiments and analyses.
M.-m.P., B.X., T.Z., and Y.Z. wrote the paper. Competing interests: The authors declare that
they have no competing interests. Data and materials availability: All data needed to
evaluate the conclusions in the paper are present in the paper and/or the Supplementary
Materials. All source codes can be downloaded from https://doi.org/10.5281/zenodo.5278798.

Submitted 9 February 2021
Accepted 27 August 2021
Published 20 October 2021
10.1126/sciadv.abh0146

Citation: T. Zhang, X. Cheng, S. Jia, M.-m. Poo, Y. Zeng, B. Xu, Self-backpropagation of synaptic
modifications elevates the efficiency of spiking and artificial neural networks. Sci. Adv. 7, eabh0146
(2021).

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.5281/zenodo.5278798

Use of think article is subject to the Terms of service

Science Advances (ISSN) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Self-backpropagation of synaptic modifications elevates the efficiency of spiking
and artificial neural networks
Tielin ZhangXiang ChengShuncheng JiaMu-ming PooYi ZengBo Xu

Sci. Adv., 7 (43), eabh0146. • DOI: 10.1126/sciadv.abh0146

View the article online
https://www.science.org/doi/10.1126/sciadv.abh0146
Permissions
https://www.science.org/help/reprints-and-permissions D

ow
nloaded from

 https://w
w

w
.science.org at Institute for B

asic Science on January 21, 2022

https://www.science.org/about/terms-service

