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N E U R O S C I E N C E

Self-backpropagation of synaptic modifications 
elevates the efficiency of spiking and artificial  
neural networks
Tielin Zhang1,2, Xiang Cheng1,2, Shuncheng Jia1,2, Mu-ming Poo2,3,4,5, Yi Zeng1,2,4, Bo Xu1,2,4*

Many synaptic plasticity rules found in natural circuits have not been incorporated into artificial neural networks 
(ANNs). We showed that incorporating a  nonlocal feature of synaptic plasticity found in natural neural networks, 
whereby synaptic modification at output synapses of a neuron backpropagates to its input synapses made by 
upstream neurons, markedly reduced the computational cost without affecting the accuracy of spiking neural 
networks (SNNs) and ANNs in supervised learning for three benchmark tasks. For SNNs, synaptic modification at 
output neurons generated by spike timing–dependent plasticity was allowed to self-propagate to limited upstream 
synapses. For ANNs, modified synaptic weights via conventional backpropagation algorithm at output neurons 
self-backpropagated to limited upstream synapses. Such self-propagating plasticity may produce coordinated 
synaptic modifications across neuronal layers that reduce computational cost.

INTRODUCTION
Activity-dependent synaptic modification is essential for learning 
in natural and artificial neural networks (ANNs). In ANNs, the idea 
that synaptic weights could be tuned to achieve the correct output 
has led to the development of a computational algorithm for super-
vised learning known as backpropagation (BP) (1). In BP, errors in 
the output of ANNs with respect to the differences between output 
values and expected values are used to adjust synaptic weights of 
upstream synapses layer by layer until the output meets the expec-
tation. BP has been widely used in various types of ANNs, including 
convolutional and recurrent neural networks (2). There is now in-
creasing interest in brain-inspired machine learning algorithms (3–6) 
that incorporate distinct brain features and could achieve problem 
solving with high efficiency and low computational cost. Spiking 
neural networks (SNNs) are considered to be the third-generation 
ANNs (7), in which information is conveyed by discrete events, 
called spikes or action potentials. While SNNs could be more potent 
in processing temporal information (8), there remains difficulty in 
developing learning algorithms with an efficiency comparable to 
that of BP. Methods commonly used to train SNNs to perform 
machine learning tasks can be roughly classified into five categories: 
recursive least square (RLS)–based, gradient-based, reward-based, 
conversion-based, and plasticity-based. First-order reduced and 
controlled error (FORCE) is a special RLS-based method, which has 
been well applied on tasks of sequence storage and replay in a recur-
rent SNN (9). Gradient-based methods are borrowed from BP, 
including spatial and temporal types, to train SNNs in a supervised 
manner. Spatial types such as surrogate gradient (10) and approxi-
mate gradient [pseudo-BP (p-BP)] (11) are used to circumvent the 
nondifferential nature of spikes (7), and temporal types like BP 

through time (BPTT) (12) and SpikeProp (13) are designed for gra-
dient learning recursively and temporally (with spike latency). The 
reward-based methods, including eligibility propagation (14) and 
reward propagation (15), are more efficient on sequential machine 
learning tasks. Conversion-based methods that directly convert 
learned ANNs to SNNs are simpler but still limited by BP on both 
biological interpretability and plausibility (16). Substantial efforts 
have also been made in applying biologically plausible plasticity 
rules found in natural neural circuits into SNNs, including Hebb’s 
rule (17, 18), short-term plasticity (STP) (19, 20), long-term poten-
tiation (LTP) (21, 22), long-term depression (LTD) (23), and spike 
timing–dependent plasticity (STDP) (24, 25). All these are local 
plasticity rules involving activity-dependent modification of synapses 
that induce the postsynaptic activity. Here, we focused more on 
plasticity-based methods and showed that introducing a novel form 
of nonlocal synaptic modification, termed “self-BP” (SBP) of synaptic 
potentiation and depression (26–30), helped to achieve a coordinated 
global propagation of synaptic modification, resulting in increased 
accuracy of SNNs and reduced computational cost of ANNs in per-
forming supervised learning.

The phenomenon of SBP, first discovered in cultures of hippo-
campal neurons (26, 30), involves cross-layer BP of LTP and LTD 
from output synapses to input synapses of a neuron (Fig. 1A). Al-
though other forms of nonlocal spreads of LTP and LTD in the pre- 
and postsynaptic neurons have been observed in natural networks 
(26, 27, 30), we here confined our study on SBP, because its existence 
was confirmed in developing retinotectal circuits in vivo (28, 29). 
The phenomenon of SBP represents a form of nonlocal activity–
dependent synaptic plasticity that may endow developing neural 
circuits the capacity to modify the weights of input synapses on a 
neuron in accordance with the status of its output synapses (27). In 
training SNNs, potentiation and depression of synapses on output 
neurons could result from STDP due to relative spike timing between 
network-generated and targeted spike trains at the output neuron, 
thus representing positive and negative weight modifications based 
on supervised learning. Further SBP of potentiation and depression 
signals to upstream synapses provided an efficient approach for 
backpropagating the “correct” and “error” signals, respectively. In 
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training ANNs, traditional BP was used for synaptic weight adjust-
ment at the output layer based on error signals. However, we found 
that replacing BP with SBP for weight adjustment of upstream 
synapses during a fraction of the learning period also produced 
beneficial effects.

RESULTS
Introducing SBP into three-layer SNNs and ANNs
For training SNNs, we used a three-layer SNN (Fig. 1C). In the first 
(input) layer, neurons received spike trains as inputs encoded by 
comparing raw signals from datasets with a train of generated ran-
dom numbers (see Materials and Methods for more details). The 
second (hidden) layer consisted of both excitatory and inhibitory 
leaky integrate-and-fire (LIF) neurons that exhibited the refractory 
period, nonlinear integration, and nondifferentiable membrane po-
tential. The third (output) layer consisted of excitatory LIF neurons 
that received spiking signals from hidden layer neurons, and the 
supervised teaching signals were presented only in training proce-
dures. The learning process used both local form of synaptic modi-
fication, i.e., STP (19, 20, 31) and STDP (32, 33), and nonlocal SBP 
via sequential steps. First, feedforward processing of spiking signals 
was performed without introducing synaptic plasticity. Second, we 

introduced STP and homeostatic adjustments of membrane poten-
tial (homeo-V) in hidden layer neurons to stabilize the spiking 
capability of the network (see Materials and Methods for details). 
Third, potentiation (“+”) or depression (“−”) of synaptic weights 
(Wj, k) was produced by the STDP rule at all synapses made by 
hidden neurons onto output neurons (Fig. 1B). Last, potentiation 
or depression of latter synapses was allowed to spread retrogradely 
by SBP to synapses made by input neurons on hidden neurons. For 
introducing some specificity in the amount of synaptic modification 
via SBP, we set a percentage factor (p∈ [10%,100%]) and a fraction 
factor (f∈ [0.1,1]), allowing SBP to cover only a percentage of up-
stream neurons (see Materials and Methods for details) and a frac-
tion of synaptic modifications to undergo SBP, respectively.

The restricted Boltzmann machine (RBM) network (34) was 
used to examine the effect of introducing SBP into ANNs. The RBM 
contained three layers, artificial neurons with rectified linear unit 
(ReLU) activation functions, and fully connected feedforward con-
nections (Fig. 2A). The learning procedure consisted of two phases: 
the unsupervised “sleep” phase and the supervised “wake” phase. 
During the sleep phase, only the energy function (see Materials and 
Methods for details) was used for calculating neuronal states toward 
the minimal energy (Fig. 2C). The wake phase included two types 
(I and II), interleaved by the sleep phase. In wake phase I, synaptic 
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Fig. 1. Introducing biological SBP into SNNs. (A) Schematic diagram depicting the BP of potentiation (“+”) or depression (“−”) from the synapses at the output layer to 
those at the hidden layer in a three-layer network. The propagated synaptic modification had the same sign, consistent with the biological discovery of SBP (27). Similar 
configurations of fixed gradient mapping between neighborhood layers exist in artificial feedback alignment (48) and direct target propagation (49). (B) For a three-layer 
SNN, the induction of potentiation (+) or depression (−) occurred at the synapse Wj, k on the output neuron by STDP, based on the timing of presynaptic spikes (in the 
hidden neuron) relative to the postsynaptic spikes in the output neuron, after updating by mean square error (MSE) of network-generated (Out2) and teaching spike trains 
(Teaching2). Wi, j and Wj, k represent synaptic weights of connections onto hidden and output neurons, respectively. The + and − signals created at synapses of hidden 
layer neuron (pink) onto an output neuron (blue) were allowed to spread to a percentage factor p (p∈ [10%,100%]) of input synapses with a fraction factor f (f∈ [0.1,1]) 
of the signals generated by the STDP (orange). Vj and Vk are membrane potentials at hidden and output layers, respectively. (C) The three-layer architecture of SNN, in 
which SBP and local plasticity (STP, STDP, and homeostatic V adjustment) were introduced at synapses at hidden and output layers, and the teaching spike train was 
given to the output LIF neurons. The diagram illustrates an output neuron inducing STDP (blue), a hidden neuron with the output synapse inducing STDP (pink), and input 
neurons with synapses receiving SBP (yellow).
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weights at the output layer (Wj, k) were updated according to stan-
dard BP algorithm with both energy and cost functions (BP1; see 
Materials and Methods for details), resulting in potentiation (+) or 
depression (−), and this was followed by the SBP of + or − (Fig. 2D). 
In wake phase II, BP was performed in a conventional manner, with 
BP2 (at the hidden layer) following BP1 (Fig. 2E). The learning 
procedure is summarized in the schematic diagram in Fig. 2B. The 
amount of self-propagated modifications was set as a fraction of 
∆Wj, k, represented by the parameter sbp in ERBM and also the 
parameter f (corresponding to that in SNNs), and the percentage 
of upstream neurons receiving SBP was described by p as that 
in SNNs. Note that the replacement of BP2 by SBP during wake 
phase I could notably reduce the computational cost normally re-
quired to perform the differential calculation of BP2 during the 
learning process.

In this study, we examined the effects of introducing SBP on the 
accuracy and computational cost of SNNs and ANNs for three 
different learning tasks involving different extents of temporal 
information: (i) recognition of handwritten digits, using Modified 
National Institute of Standards and Technology (MNIST) dataset 
(fig. S1A) (35); (ii) phonetic transcription, using NETtalk dataset 
(fig. S1B) (36); and (iii) gesture recognition, using event-based 
dynamic vision sensor gesture (DvsGesture) dataset (fig. S1C) (37). 
The computational cost of networks during learning was defined by 
the product of the mean training epoch to achieve some defined 
accuracy levels (Fig. 3A) and algorithmic complexity per epoch 
(Fig. 3B). Our results demonstrated that introducing SBP into SNNs 

resulted in higher accuracies and lower computational costs in learn-
ing all three tasks. Furthermore, the combined use of SBP and BP in 
ANNs also resulted in similar benefits in all three tasks. These results 
underscored the usefulness of introducing a novel nonlocal plasticity 
rule found in natural neural networks into SNNs and ANNs.

SBP improved the efficiency of SNNs for three 
benchmark tasks
For learning hand digit recognition on MNIST dataset, we used an 
SNN comprising 784 input neurons, 500 hidden neurons (half 
excitatory and half inhibitory), and 10 output neurons, with other 
configuration parameters shown in table S1. We trained the SNN 
with a subset (60,000) of MNIST dataset and tested its accuracy us-
ing the remaining MNIST data (10,000). The values of p (p= 0.3) 
and f (f= 0.7) were chosen as the standard parameters after a range 
of values were tested for optimal performance of SNNs (Fig. 4B). 
We found that the training error rate of SNNs using SBP converged 
faster than that found without using SBP (fig. S2A). The test error 
rate reached 6.25 ± 0.52% (SD, n= 5 repeating experiments with 
different random seeds) after the 91st epoch when only local 
plasticity rules (STDP and STP) were used, and it was significantly 
reduced to 4.86 ± 0.12% (SD, n= 5) after the 100th epoch with the 
addition of SBP (P< 0.01, t test; Fig. 4A). Furthermore, we compared 
the accuracy of the hand digit recognition achieved by SBP with or 
without STP and found that STP helped to converge training 
(fig. S2D) and reduce test error rate of SNNs slightly (from 5.02 ± 0.14% 
to 4.86 ± 0.12%; SD, n= 5; P< 0.01, t test; fig. S2G). Moreover, the 
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Fig. 2. Introducing biological SBP into ANNs. (A) Schematic diagram depicting the architecture of the shallow ANN, represented by a three-layer restricted Boltzmann 
machine (RBM), with full connections between neurons in neighborhood layers. Neurons in hidden and output layers were artificial rate neurons with ReLU activation 
functions. Two network state indicators were used: the unsupervised energy function (ERBM; see Materials and Methods for details) describing the inner network state and 
the supervised cost function (CRBM; see Materials and Methods for details) describing network output state. (B) Schematic diagram depicting the learning process of RBM 
using SBP, in which wake phase I using BP (BP1) and SBP and wake phase II using only BP (BP1 + BP2) interleaved by the sleep phase. (C) Unsupervised sleep phase, in which 
both Wi, j and Wj, k were tuned toward minimal energy function ERBM. (D) Wake phase I using both BP and SBP. The BP1 produced potentiation (∆Wj, k> 0, +) or depression 
(∆Wj, k< 0, −) of Wj, k between a hidden neuron (pink) and output neuron (blue), determined by differentiating the sum of CRBM and ERBM. The SBP induced + and − of Wi, j 
based on ∆Wi, j, with a percentage factor p and a fraction factor f as described in Fig. 1B. (E) Wake phase II using only BP containing both BP1 and BP2. Wi, j and Wj, k were 
updated on the basis of the minimization of both cost and energy functions with the chain rule of calculus.
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computational cost for SNNs with and without SBP was (1.92 ± 
0.27) × 107 and (0.88 ± 0.09)×107 (SD, n= 5; P< 0.01, t test), respec-
tively (Fig. 4C). Thus, the SBP elevated accuracy (by ~1.4%) and 
reduced computational cost (by ~54.2%) of SNNs. Last, we com-
pared the performance and computational cost of our learning 
algorithms with those of other reported state-of-the-art SNN 
algorithms using plasticity-based (20, 32, 38) and gradient-based 
(14, 15, 39, 40) rules. For an SNN model consisting of the same 
number of parameters as described above (the number of neurons 
in input, hidden, and output layers), our algorithms yielded a higher 
accuracy and lowered computational cost than previously reported 
plasticity-based algorithms (fig. S3, A and B, and table S2). We also 
examined a gradient-based SNN using SBP [spiking multilayer per-
ception (spiking-MLP)] and found similar benefits (fig. S3, A and B).

For learning phonetic transcription on NETtalk dataset, the SNN 
had to deal with multiple target phonemes. We thus used an archi-
tecture comprising 189 input neurons, 500 hidden neurons (half 
excitatory and half inhibitory), and 26 output neurons (that yielded 
116 classes). Other network parameters are shown in table S1. The 
introduction of SBP improved the efficiency of SNNs after training 
with p= 0.3 and f= 0.7 (Fig. 4E), showing a test error rate of 14.30 ± 
0.12% (SD, n= 5), which was lower than that obtained by using only 
STP and STDP in the absence of SBP (15.74 ± 0.20%; SD, n= 5; P< 0.01, 
t test) on the same test dataset (Fig. 4D and fig. S2B). Local STP had 
little help in achieving higher accuracy, because the test error rate 
(14.30 ± 0.12%; SD, n= 5) when both STP and SBP were present was 
similar to that found when STP was absent (14.30 ± 0.13%; SD, n= 5; 
fig. S2, E and H). Furthermore, SBP also reduced computational 
cost from (4.47 ± 0.43) × 106 (without SBP) to (0.91 ± 0.37)× 106 
(with SBP; SD, n= 5; P< 0.001, t test; Fig. 4F). Thus, the SBP elevated 
accuracy (by ~1.4%) and reduced computational cost (by ~79.6%) 
of SNNs. Our results also yielded higher accuracy and lowered com-
putational cost than those obtained by us using our SNN structure and 
other reported plasticity-based (20) and gradient-based (14, 15, 39, 40) 
algorithms for SNNs (fig. S3, C and D, and table S2).

For learning gesture recognition on DvsGesture dataset, we used 
an SNN architecture comprising 1024 input neurons, 500 hidden 
neurons (half excitatory and half inhibitory), and 11 output neurons 

(corresponding to 11 gesture types). Detailed network parameters 
are listed in table S1. The use of SBP in addition to STP and STDP 
reduced the test error rate from 16.56 ± 0.16 (SD, n= 5) to 15.24 ± 
0.04% (SD, n= 5; P< 0.001, t test) (Fig. 4G and fig. S2C) after train-
ing with p= 0.3 and f= 0.7 (Fig. 4H). The test error rate achieved 
by SNN using SBP and STP was 15.24 ± 0.04% (SD, n= 5), which 
was slightly lower than that using SBP without STP (15.41 ± 0.11%; 
SD, n= 5; P< 0.01, t test) (fig. S2, F and I). Furthermore, the compu-
tational cost for SNNs was (0.92 ± 0.03) ×107 and (1.53 ± 0.40) × 107, 
with and without SBP, respectively (SD, n= 5; P< 0.001, t test; Fig. 4I). 
Hence, the SBP elevated SNN’s accuracy (by ~1.3%) and reduced 
SNN’s computational cost (by ~39.9%). Our results also yielded higher 
accuracy and lowered computational cost than that obtained by us 
using reported plasticity-based (20) and gradient-based (14, 15, 39–41) 
SNN algorithms on our network architecture (fig. S3, E and F, and 
table S2). In summary, the introduction of SBP during training for 
three benchmark tasks elevated the efficiency of SNNs by increasing 
the accuracy (up to 1.4%) and greatly reducing the computational 
cost (up to 79.6%).

SBP improved the efficiency of ANNs for three benchmark tasks
For learning hand digit recognition, we used an RBM network com-
prising 784 input neurons, 500 hidden neurons, and 10 output neu-
rons. Other related key parameters are shown in table S1. We trained 
the RBM with a subset (60,000) of the MNIST dataset and tested the 
accuracy of the RBM during the course of learning with a separate 
subset (10,000) from the data. We compared the error rates for two 
types of training: First, only BP (BP1 + BP2) was used in all stages of 
wake phase, and second, SBP was introduced (BP1 + SBP) in wake 
phase I. We found that the error rate gradually reduced in nearly 
identical manner as the training proceeded (fig. S2J). After 100 epochs 
of training with wake phase I including BP1+ SBP, the test error rate 
reached 2.11 ± 0.08% (SD, n=5), a value lower (~0.31% improve-
ment) than that obtained with 100 epochs of training with BP only 
(BP1 + BP2 in both wake phase I and phase II) (2.42 ± 0.13%; SD, n= 
5; P< 0.001, t test; Fig. 5A). We further examined the dependence 
of RBM performance difference (∆% accuracy during the test; top 
panel in Fig. 5B) on the number of iterations during sleep and wake 
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phases (Ns and Nw) for each training epoch, which is directly related 
to the computational cost (bottom panel in Fig. 5B). By varying Ns 
and Nw from 1 to 26 with increments of 5, we obtained an accuracy 
difference map (∆Acc) for the RBM performance with and without 
SBP for different combinations of Ns and Nw. We found that a broad 
distribution of Ns and Nw could yield higher accuracy by training 
with SBP in the wake phase, and the optimal pair of Ns and Nw to 
achieve the highest benefit was 11 and 6, respectively. We further 
estimated the computational cost difference of training RBM with 
and without SBP at these optimal values of Ns and Nw. The result 
showed that the computational cost for training with SBP [(0.57 ± 
0.01) × 107; SD, n= 5] was substantially lower (a ~57.1% reduction) 
than that for training with BP only [(1.33 ± 0.03) × 107; SD, n=5; 
P< 0.001, t test; Fig. 5C].

For learning phonetic transcription, we used an RBM network 
comprising 189 input neurons, 500 hidden neurons, and 26 output 
neurons. Other related key parameters are shown in table S1. We 
trained the RBM with a subset (5033) of the NETtalk dataset and 
tested the accuracy of the RBM using a separate subset (500) from 
the NETtalk dataset during the course of learning. We found that 
the final converged error rates were similar with and without SBP 
for the training set (fig. S2K) and significantly lower for the test set 
for training with SBP (16.99 ± 0.28%), as compared to that without 
SBP (17.59 ± 0.64%; SD, n= 5; P= 0.002, t test) (Fig. 5D), represent-
ing ~0.6% improvement. Notably, the error rates converged much 
faster during the training with SBP for both the training and test 
datasets. This result showed that the introduction of SBP resulted in 
a lower error rate during both training and test, implicating higher 
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Fig. 4. SBP improved the performance of SNNs in three benchmark tasks. (A to C) Performance of SNNs for the hand digit recognition task using the MNIST dataset. 
(A) The SBP-improved SNN achieved higher test accuracy compared with that obtained without SBP (both with the same STDP, STP, and homeostatic V adjustment). Arrows 
point to the error rates of upper bound and lower bound, respectively, for comparing the computational cost. (B) Accuracies of SNNs using pairs of percentage factor (p) 
and fraction factor (f). The same pair of parameters (p= 0.3 and f= 0.7) was selected for a relatively better network performance (dashed circles) in all three tasks. The 
accuracy is coded in color by the scale shown on the right. (C) The SNN using SBP improved accuracy and reduced the computational cost [at error rates defined by 
arrowheads in (A)] compared to that found without SBP. (D to F) Performance of SNNs for the phonetic transcription task, presented in the same manner as that in (A) to 
(C). (G to I) Performance of SNNs for the gesture recognition task using the DvsGesture dataset presented in the same manner as that in (A) to (C). All figures are averaged 
over five repeating experiments with different random seeds.
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network efficiency. Furthermore, the difference matrix of RBM 
with SBP learning also showed a broad distribution of Ns and Nw that 
yielded higher accuracy (top panel in Fig. 5E) and lower computa-
tional cost (bottom panel in Fig. 5E) compared to that without SBP, 

with optimal Ns and Nw values of 16 and 6, respectively. The use of 
SBP at these optimal Ns and Nw values reduced the computational 
cost by ~36.0% [from (2.28 ± 0.17) × 106 to (1.46 ± 0.04) ×106; SD, 
n= 5; P< 0.001, t test] (Fig. 5F).

B HE

A GD

C F I
× × ×

Fig. 5. SBP improved RBM performance in three benchmark tasks. (A to C) Performances of three-layer RBMs for hand digit recognition task. (A) Progressive reduction 
of the error rate (percentage of error trials) for the test dataset during RBM learning (see fig. S2, J to L, for error rates of three training datasets) with BP alone (blue) and 
with the addition of SBP (red) during the wake phase. Each curve consisted of 100 epochs of training that alternated between sleep and wake phases (see Fig. 2B). Arrows 
point to the error rates of upper bound and lower bound, respectively, for comparing the computational cost. (B) Dependence of RBM efficiency on training computa-
tional cost in sleep and wake phases. The gain in accuracy (upper) or computational cost (lower) of the RBM performance after training was indicated by the difference of 
accuracy (∆Acc) or cost (∆Cost) obtained by training with and without SBP, and was plotted against the number of epochs during the sleep phase (Ns) and wake phase 
(Nw). The Ns and Nw values between 1 and 26 (with an increment of 5) were used. Optimal Ns and Nw, in terms of the gain in both accuracy and cost, were marked by white 
stars and chosen for presentation in (C). (C) Summary histograms on the average of maximal accuracy and computational costs marked by arrowheads in (A) at the opti-
mal Ns and Nw chosen from the matrix in (B). (D to I) Performance of RBM for phonetic transcription task (D to F), and gesture recognition task (G to I), presented in the 
same manner as that in (A) to (C). (G) Early stopping was given at the 60th epoch for the test convergence.
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For learning gesture recognition, the dataset was first reduced in 
size from 128 × 128 pixels to 32 × 32 pixels by a preprocessing pro-
cedure (see Materials and Methods for details) to fit the relatively 
low number of neurons in our three-layer RBM, which comprised 
1024 input neurons, 500 hidden neurons, and 11 output neurons. 
We trained the RBM with a subset (1176) of DvsGesture data and 
tested the accuracy of RBM using a separate data subset (288) during 
the course of learning. We found that training with SBP yielded an 
error rate slightly lower than that of the training without SBP at the 
end of 100 training epochs (fig. S2L). For test set, the error rate be-
came much lower for training with SBP than without SBP after 
60 epochs of training. At the 50th epoch, the error rate for recognizing 
the test set reached the minimum of 29.12 ± 1.82% (SD, n= 5) for 
the network trained with SBP, a value significantly lower than that 
obtained without SBP (33.33 ± 1.48%; SD, n= 5; P< 0.01, t test) 
(Fig. 5G), representing ~4.2% improvement. The difference matrix 
at the 50th training epoch also showed a broad distribution of higher 
accuracy (top panel in Fig. 5H) and lower computational cost 
(bottom panel in Fig. 5H) for different combinations of Ns and Nw, 
with the optimal values of 16 and 11, respectively. The computa-
tional cost for training with SBP [(1.12 ± 0.04)×107] was also lower 
than that without SBP [(4.35 ± 0.01) × 107; SD, n= 5; P< 0.001, t test], 
representing ~74.3% reduction of the computational cost (Fig. 5I). 
In summary, we found that when SBP was introduced into the 
training of RBM, a type of ANNs, the performance on all three bench-
mark tests was improved to varying extents by reducing both the 
error rate (up to 4.2%) and computational cost (up to 74.3%).

DISCUSSION
In this work, we have introduced SBP of synaptic modification into 
SNNs and ANNs and examined its benefit for learning three bench-
mark tasks. For simplicity, we used three-layer feedforward networks 
comprising a variable number of neurons in the input, hidden, and 
output layers, depending on the task. The learning of the SNN con-
sisted of two independent phases: first, the unsupervised learning 
phase of homeostatic adjustment of the membrane potential that 
maintained the firing capacity of the SNN and STP, which was 
found to be helpful in elevating the network efficiency (fig. S2, D 
to I), and second, the supervised learning phase that used STDP to 
initiate the correct and error signals in the form of potentiation and 
depression, respectively, and SBP for cross-layer synaptic weight 
adjustments. These SBP signals were generated by algebraic sum-
mation of synaptic changes based on the relative timing of all pairs 
of pre- and postsynaptic spikes using the standard pairwise STDP 
rule (42). Although not introduced in this study, additional constraints 
imposed by other STDP rules for natural spike trains in pre- and 
postsynaptic neurons (43, 44) may further improve the network 
capability. Furthermore, other forms of nonlocal spread of synaptic 
modifications besides SBP, such as presynaptic lateral spread of 
LTP/LTD to synapses made by axon collaterals of the same pre-
synaptic neurons (26, 30) and to other converging inputs on the 
postsynaptic neuron (28, 29), could be further explored for their 
potential benefits for SNNs.

For ANNs, we have examined the benefit of introducing SBP 
into the training of RBM, using its special feature of separating the 
training into supervised and nonsupervised phases. We have also 
examined multilayer spiking-MLP models and found similar bene-
fits (fig. S4D). In supervised wake phase of RBM, the standard 

synaptic weight update was mostly based on the BP of error signals 
toward the minimization of the global loss function. Adding SBP 
would disturb the supervised tuning of the direction of the BP-
induced gradient. A similar situation was found when Hebb’s rule 
was added directly into BP (45). Perturbation of BP-induced synaptic 
weight updated by SBP could help drive the network modification 
toward an alternative direction, where the RBM may attain a higher 
accuracy with lower computational cost.

Only simple three-layer ANNs were used in the present study for 
all benchmark tests. Our studies on the SNN with four to six layers, 
using SBP in all hidden layers, showed that the benefit of introduc-
ing SBP was greatly degraded to a level below that achieved by the 
three-layer SNN. Training of RBM with four to six layers, with the 
SBP replacing BP in all hidden layers during wake phase I training, 
yielded no improvement in accuracy beyond that achieved by the 
three-layer RBM, despite higher computational costs (fig. S4, A and B). 
The degradation of accuracy in SNNs with more than three layers 
may be attributed to excessive spread of potentiation or depression 
signals when SBP was allowed to occur beyond the neuron that 
generates the original synaptic modification. In addition, the failed 
learning of SNNs using SBP for higher layers might also be caused 
by the nonconvergence problem of synaptic modifications. The 
previous work has shown that the recurrent SNN contains exploding 
gradients (16). The SNNs using SBP also show a nonconvergence 
learning problem, especially for deeper ones (fig. S4A), where the 
synaptic modifications between input and hidden layers are domi-
nated by the STDP in hidden and output layers, and the influence of 
SBP from the induction layer to backpropagated layers is progres-
sively weaker. This hypothesis was further verified in fig. S4C, where 
the distribution of synaptic modifications in three (or four) layers 
was properly norm-distributed, while that in five (or six) layers is 
left the same as that in initialization. Biologically experimental re-
sults of SBP in a network containing hippocampal neurons are con-
sistent with this phenomenon, where the SBP also fails to propagate 
beyond one layer to more upstream neurons (30). The biological 
interpretation of this failure is that the potentiation/depression at 
input synapses due to SBP is based on cellular mechanisms distinctly 
different from those underlying LTP/LTD at the output synapses, 
thus incapable of generating further SBP in more upstream neurons. 
Notably, in some regions of the nervous system, such as retina, 
hippocampus, or neocortex, information processing could largely 
be characterized as a three-layer network operation within the 
region. Our finding that three-layer ANNs appear to be the optimal 
network to implement SBP suggests that ANNs may benefit from the 
use of three-layer networks as relatively independent basic modules, 
and more sophisticated ANNs could be built via parallel and serial 
connections among them.

In considering the efficiency of ANNs in performing standard 
benchmark tasks, previous studies using a variety of ANNs have 
largely focused on the accuracy in recognizing the test samples after 
network training. In this study, we have examined both the accuracy 
and the computational cost in learning tasks. Notably, the reduction 
of the computational cost represents the major benefit conferred by 
introducing SBP in both SNNs and ANNs. In estimating the com-
putational cost, we used the product of the mean training epoch to 
achieve some defined accuracy levels (Fig. 3A) and algorithmic 
complexity per epoch (Fig. 3B) as an indicator. Other aspects of the 
cost, including the number of arithmetic operations and the number 
of bits required to specified synaptic weights and neuronal states 
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within each iteration, were not included here but could be further 
considered in the future work. In addition, we compared the com-
putational cost during training in reaching the same given accuracy 
levels, rather than those for attaining the final converged accuracy 
by each operation. In most operations, the small increment in the 
final accuracy often requires disproportional large amount of com-
putation. For efficient performance of the network, relatively high 
rather than the highest accuracy could be sufficient. The notion of 
balanced computational cost and accuracy is in line with the efficient 
information processing of the brain, where the rapidity in computa-
tion (with low energy cost) is as relevant as the accuracy.

Last, we note that the original experiment demonstrating SBP in 
cultured networks of hippocampal neurons (26) was inspired by the 
power of BP algorithm, although it seems to be biologically implausible 
(46). The SBP-associated information flow occurs in the neuronal 
cytoplasm, via retrograde fast axonal transport of molecular signals 
(28, 29). The finding of SBP in natural networks has shown that an 
effective machine learning algorithm for ANNs can spur neuro-
science discovery, and the present study further demonstrates that 
introducing algorithm-inspired biological discovery back to ANNs 
further elevates their efficiency. Such two-way interactions be-
tween neuroscience and artificial intelligence have much in store 
for the future.

MATERIALS AND METHODS
Definition of computational cost during training
The computational cost (Costi) of the algorithm i during training is 
defined by the product of the mean epoch number to achieve a de-
fined error level (Fig. 3A) and a value O(n)i representing the algo-
rithmic complexity per epoch (Fig. 3B). For the comparison of two 
algorithms (i= 1,2), the computational cost is calculated as follows

	​​ Cost​ i​​  = ​  1 ─ N ​ ​ ∑ 
l=1

​ 
N

 ​​Argmin( ​f​ i​​(x ) = ​Err​ l​​ ) × O ​(n)​ i​​​	 (1)

where Argmin( ∙ ) is the argument of the minimum, fi(x) is the error 
rate curve with input epoch x, O(n)i is the algorithmic complexity 
with n depicting the number of parameters, and N is the number of 
predefined error levels (N= 5). Errl is selected out from a range of 
error rates, with a lower bound of Max( Min (f1), Min (f2)), defined 
as the relatively higher minimal error rates of f1(x) and f2(x), and also 
with an upper bound of Min( Max (f1), Max (f2), f0), defined as the 
relatively lower maximal error rates among f1(x), f2(x), and an addi-
tionally predefined error f0 (the maximally acceptable error rate).

Preprocessing of datasets
For the MNIST dataset, the raw data were processed with normal-
ization (i.e., subtract the minimum and divide by the range) and 
repeated T times to generate Iraw(t). For the NETtalk dataset, Iraw(t) 
was directly given by auditory signals. Then, input spike train Ispikes(t) 
was generated from Iraw(t) for these two datasets, shown as follows

	​​ ​I​ spikes​​(t ) = ​{​​​1​ 0​ ​
if (​I​ raw​​(t ) ≥ ​ I​ rd​​(t ) )​  
if (​I​ raw​​(t ) < ​ I​ rd​​(t ) )

 ​​​	 (2)

where Ird(t) is a uniformly sampled random number from 0 to 1. For 
the DvsGesture dataset, the raw signals were already event based; hence, 
an additional preprocessing for spike coding was not necessary.

The learning procedure of SNNs
For simplicity, we use i, j, and k to represent the indices of neurons 
in input, hidden, and output layers, respectively. The approximate 
pathway of information propagation and plasticity propagation in 
SNN is shown as follows

	​​ 

​​


  ​​Δ ​W​i,j​ SBP​(t) 


​​ 
SBP

​ ​   ← ​ ​ Δ ​W​j,k​ STDP​(t) 


​​ 
STDP,Dale’slaw

​​​​​  

Plasticity propagation

 ​   ←

​   

​​


    ​​​V​j​ E​(t ) , ​V​k​ E​(t) 


​​ 
Homeo−V

​ ​  + ​​​V​j​ F​(t ) , ​V​k​ F​(t) 


​​ 
LIFpropagation

​ ​  ← ​​​ I​ syn​​ 
⏟

​​ 
STP

​ ​  ← ​​​ I​ spikes​​(t) 
⏟

​​ 
Input

​ ​​​​    

Information propagation

 ​

​​	 (3)

where the plasticity induction is calculated on ∆Wj, k between the 
hidden and output layers by STDP first and then propagated to 
∆Wi, j between the input and hidden layers. Each procedure will be 
further described in the following subsections.

The STP in SNNs
For the local STP, we allow the amplitude of postsynaptic potential 
to increase (facilitation) or decrease (depression) when the spiking 
frequency is low or high, respectively. This is described by the equa-
tions below, following the formulation of previous studies (19, 31)

	​​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​ 

∣ ​ du ─ dt ​  =  − ​ u ─ ​​ f​​ ​ + U(1 − u ) ​I​ spikes​​(t)

​   ∣ ​  dx ─ dt ​  = ​  1 − x ─ ​​ d​​ ​  − ​uxI​ spikes​​(t) ​   

∣ ​ 
​I​ syn​​

 ─ dt ​  =  − ​ 
​I​ syn​​

 ─ ​​ s​​ ​  + ​AW​ i,j​​ ​uxI​ spikes​​(t)

​​​	 (4)

where u and x are normalized variables representing dynamical 
characteristics of synaptic facilitation and depression, respectively. 
f and d are recovery time constants for facilitation and depression, 
respectively. A is an adjustable constant for synaptic weight Wi, j. s 
is recovery time for synaptic current Isyn, which is used together with 
Eq. 5 for introducing STP into SNNs.

The LIF propagation in SNNs
In the LIF neuron model, the spikes in presynaptic neurons trigger 
postsynaptic potentials, which are dynamically integrated and gen-
erate spikes in the postsynaptic neuron when the firing threshold is 
reached. A refractory period is used after each spike. The membrane 
potential V(t) is calculated as follows

	​​ ​ m​​ ​ dV(t) ─ dt ​   =  − (V(t ) − ​V​ L​​ ) − ​ 
​g​ E∣I​​ ─ ​g​ L​​ ​ (V(t ) − ​V​ E∣I​​ ) + ​ 

​I​ syn​​
 ─ ​g​ L​​ ​​	 (5)

where m = Cm/gL, Cm is a constant representing membrane capaci-
tance, VL is the leaky potential, gL is the leaky conductance, gE ∣ I 
represents excitatory conductance (gE) or inhibitory conductance (gI), 
Isyn is the postsynaptic current, and VE ∣ I represents reversal poten-
tials for excitatory (VE) or inhibitory (VI) neurons. The membrane 
potential V(t) will be reset on threshold crossing (VTr) and clamped 
to the resting potential Vrest during the refractory period ref. The 
membrane potential V(t) in the feedforward phase will be repre-
sented as VF(t).
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The homeostatic V adjustment in SNNs
To circumvent the problem of nondifferentiable membrane poten-
tial with spikes in SNNs, we use a previous balanced tuning approach 
(20, 33) for the homeostatic adjustment of Vj(t). The network state 
is presented by the energy function ​​E​j​ SNN​​ as follows

	​​ E​j​ SNN​ = ​ ​ a​​ ​V​ j​​ ​(t)​​ 2​ + ​​ b​​ ​∑ 
i
​ 

N
 ​​(​V​ i​​(t ) ​W​ i,j​​ ​V​ j​​(t ) ) + ​​ c​​ ​V​ j​​(t)​	 (6)

With a = 0.5, b = −1, c = − VTr, ​​
∂ ​E​j​ SNN​

 _ ∂ ​V​ j​​(t) ​​ is obtained as follows

	​​​ 
∂ ​E​j​ SNN​

 ─ ∂ ​V​ j​​(t) ​  = ​ V​ j​​(t ) − ​(​​​∑ 
i
​ 

N
 ​​(​V​ i​​(t ) ​W​ i,j​​ ) − ​V​​ Tr​​)​​  = ​ V​ j​​(t ) − ​V​ j​​(t + 1)​​	 (7)

which represents temporal differential of the network state with 
respect to differential of membrane potential state of postsynaptic 
neuron j between its current state Vj(t) and its future state Vj(t + 1). 
The tuning direction of ∆Vj(t) will converge toward its stable state 
by ​∆ ​V​j​ E​(t)​ with learning rate e, as follows

	​​  ​V​j​ E​(t ) = − ​​​ e​​(​​ ​V​ j​​(t ) − ​(​​​∑ 
i
​ 

N
 ​​ ​V​ i​​(t ) ​W​ i,j​​ − ​V​​ Tr​​)​​​)​​​​	 (8)

For the total change of membrane potential, ∆Vj(t) is obtained 
as follows

	​​  ​V​ j​​(t ) = ​ ​t​ e​​ ─ ​T​ e​​
 ​  ​V​j​ F​(t ) + ​(​​1 − ​ ​t​ e​​ ─ ​T​ e​​

 ​​)​​ ​V ​j​ E​(t)​​	 (9)

where ​∆ ​V​j​ F​(t)​ represents the neuron state update in the feedforward 
procedure described in Eq. 5, and ​∆ ​V​j​ F​(t)​ and ​∆ ​V​j​ E​(t)​ are summed 
with the weight factor ​​ ​t​ e​​ _ ​T​ e​​

​​ and ​​​(​​1 − ​ ​t​ e​​ _ ​T​ e​​
​​)​​​​, respectively. te is the lapsed 

number of epochs, and Te is a total number of that during training. 
As the training proceeds, the weight of ​∆ ​V​j​ F​(t)​ increases gradually 
to 1, whereas that of ​∆ ​V​j​ E​(t)​ decreases to 0.

The STDP in SNNs
The teaching signal is created by repeating T times of expected spik-
ing states of output neurons. That means only target-class neurons 
contain spikes, while others are left silent. The activity difference 
between network-generated spike trains and teaching spike trains is 
described as D and obtained as follows

	​ D = ​ ∑ 
k
​ 

K
 ​​​∑ 

t
​ 

T
 ​​ ​(​V​ k​​(t ) − (t − ​t​ s​​ ) )​​ 2​​	 (10)

It is a mean square error (MSE) distance during time T for all K 
neurons in the output layer, where ts represents spiking time in the 
teaching signal. To minimize D, the update of neural states Vk(t) in 
output neuron k is given by the following equation

	​​  ​V​ k​​(t ) = − ​(​​​∑ 
t
​ 

T
 ​​ ​V​ k​​(t ) − (t − ​t​ s​​ ) ​)​​​​	 (11)

where  is the learning rate. The update of Vj(t) in Eq. 9 and Vk(t) in 
Eq. 11 will further be consolidated into synaptic modifications during 
next-step STDP. The weight adjustment at each output synapse is 
calculated by the standard biphasic STDP rule (25, 27) as follows

​​ ​W​j,k​ STDP​(​t​ j,s​​, ​t​ k,s​​ ) = ​
{

​​​​
 ​W​j,k​ STDP+​  = ​ A​ +​​ ​e​​ ​

​t​ j,s​​−​t​ k,s​​ _ ​​ +​​ ​ ​
​  

 ​W​j,k​ STDP−​  =  − ​A​ −​​ ​e​​ −​
​t​ j,s​​−​t​ k,s​​ _ ​​ −​​ ​ ​

​​  ​
if (​t​ j,s​​ − ​t​ k,s​​ ≤  0)

​  
if (​t​ j,s​​ − ​t​ k,s​​ >  0)

 ​​​​	 (12)

where A+ and A− are the scaling factors, and tj, s and tk, s are the spik-
ing time of each pair of pre- and postsynaptic neurons (j and k). + 
and − are the delay time parameters of the potentiation and depres-
sion, respectively. The detailed parameters are shown in table S1.

The Dale’s law in SNNs
Unlike conventional ANNs, in which the sign of synaptic output at 
different synapses from the same neuron can be both positive or 
negative. Here, we also follow the constraint of Dale’s law (47), 
where the postsynaptic potentials of all synapses, either positive 
(excitatory) or negative (inhibitory), are identical in profile but op-
posite in sign, based on the initial assignment of the neuronal type 
in the hidden layer. The synaptic modifications during learning 
have no limitation given that Wi, j∆Wi, j ≥ 0, but have a limitation of 
∆Wi, j ∈ [−∣Wi, j∣, ∣Wi, j∣] given that Wi, j∆Wi, j< 0, to make sure that 
the signs of excitatory and inhibitory synapses would not be 
changed (20).

The SBP in SNNs
When STDP is induced at some specific output synapses, the synaptic 
weight adjustment ​∆ ​W​j,k​ STDP+​​ and ​∆ ​W​j,k​ STDP−​​ will backpropagate with 
different proportions of LTP and LTD to produce weight adjustment 
of ​∆ ​W​i,j​ SBP+​​ and ​∆ ​W​i,j​ SBP−​​ at hidden layer synapses, as shown by an 
example below for three hidden neurons (j= 1,2,3) and two output 
neurons (k= 1, 2)

	​​ 

​Δ ​W​j,k​ STDP​  = ​ [​​​ 0.1​  − 0.2​  0​  − 0.4​  0.5​  − 0.6​​]​​ =​

​   ​​​[​​​0.1​  0​  0​ 0​  0.5​  0​​]​​ 


​​ 

Δ​W​j,k​ STDP+​(LTP)

​ ​  + ​​​[​​​  0​  − 0.2​  0​  − 0.4​  0​  − 0.6​​]​​  


​​  

Δ​W​j,k​ STDP−​(LTD)

​ ​ ​​	 (13)

where values in the matrix are obtained by Eq. 12. Positive, negative, 
and zero values in the matrix indicate LTP, LTD, and no STDP, respec-
tively. Then, ​​∑ k​ ​​ ∆ ​W​j,k​ STDP+​​ is calculated by summating all ​∆ ​W​j,k​ STDP+​​ 
connected to hidden neuron j. The update of ​∆ ​W​i,j​ SBP+​​ and ​∆ ​W​i,j​ SBP−​​ can 
be described as follows

	​  ​W​i,j​ SBP+​ =  (​​ f​​ ​E​ diag,i​​(​I​ j​​ + ​​ p​​ ​​ n​​(​∑ 
k
​ ​​ ​W​j,k​ STDP+​ ) ) )  ​W​i,j​ STDP+​​	 (14)

	​  ​W​i,j​ SBP−​ =  (​​ f​​ ​E​ diag,i​​(​I​ j​​ − ​​ p​​ ​​ n​​(​∑ 
k
​ ​​ ​W​j,k​ STDP−​ ) ) )  ​W​i,j​ STDP−​​	 (15)

where n( ∙ ) denotes the normalization function with ​​​ n​​(x ) = ​  x _ ​∑ i​​ ​x​ i​​​
​​, 

I is an all-ones vector (with Ij= 1), p is a proportional factor 
(p∈[10%,100%]), f is a fraction factor (f∈[0.1,1]), and y = Ediag, 

i(x) denotes the function of expanding a vector x to a diagonal ma-
trix y with yj, j = xj.

The learning procedure of the RBM
For a three-layer RBM, the network states at input, hidden, and out-
put layers are represented as ui, uj, and uk, respectively. The infor-
mation propagation and plasticity propagation in the RBM is shown 
as follows
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	​​
​​


   ​​Δ ​W​i,j​ SBP​ 
⏟

​​ 
SBP

​ ​   ← ​ ​  Δ ​W​j,k​ BP​ 
⏟

​​ 
BPinduction

​​  ← ​​​ C​​ RBM​ 
⏟

​​ 
Loss

​ ​  + ​​​E​​ RBM​ 
⏟

​​ 
Energy

​ ​​​​   

Plasticity propagation

 ​   ←
​   

​ ​   ​ ​​ u​ j​​, ​u​ k​​ 
⏟

​​ 
Propagation

​​  ← ​ ​​  u​ i​​ 
⏟

 ​​ 
Input

​​​​​  
Informationpropagation

​

 ​​	  (16)

where the synaptic modifications between input and hidden layers 
(∆Wi, j) are constrained by that between hidden and output 
layers (∆Wj, k).

The loss function in RBM
The loss function of RBM is defined as the standard MSE, shown 
as follows

	​​ C​​ RBM​  = ​  1 ─ 2 ​ ​ ∑ 
k=1

​ 
K

  ​​ ​(​u​ k​​ − ​o​ k​​)​​ 2​​	 (17)

where cost is the difference of output uk and expected teaching out-
put ok. For the RBM using pure BP, the synaptic weight adjustment 
​∆ ​W​j,k​ BP​​ and ​∆ ​W​i,j​ BP​​ can be calculated by the differential chain rule 
as follows

	​​​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​​​
 ​W​j,k​ BP​  =  − ​​ bp​​ ​ ∂ ​C​​ RBM​ ─ ∂ ​W​ j,k​​ ​

​  
 ​W​i,j​ BP​  =  − ​​ bp​​ ​ ∂ ​C​​ RBM​ ─ ∂ ​W​ i,j​​

 ​
 ​​​	 (18)

where bp is the learning rate.

The energy function in RBM
The SBP is implemented by a linear relationship between ∆Wj, k and 
∆Wi, j. We apply a special energy function ERBM to constrain this 
linear relationship during training via the following equation

	​​
​E​​ RBM​ =  ((​∑ 

i,j
​ ​​ ​u​ i​​(t ) ​W​ i,j​​ ​u​ j​​(t ) ) + (​∑ 

i
​ ​​ ​ (​u​ i​​(t ) )​​ 2​ ) )

​    
+ ​​ sbp​​((​∑ 

j,k
​ ​​ ​u​ j​​(t ) ​W​ j,k​​ ​u​ k​​(t ) ) + (​∑ 

j
​ ​​ ​ (​u​ j​​(t ) )​​ 2​ ) )

 ​​	  (19)

where sbp is scalar variable for setting the influence of SBP. The total 
cost function for RBM using SBP is shown as follows

	​​ C​ loss​​ =   ​C​​ RBM​ + ​E​​ RBM​​	 (20)

where  is a decay factor.

The SBP in RBM
When SBP is introduced, we replace BP at ∆Wi, j at some iterations 
(during wake phase I) as follows

	​  ​W​i,j​ SBP​ = ​ ​ SBP​​ ​​ f​​ ​E​ diag,i​​(​I​ j​​ + ​​ s​​(​​ p​​ ​∑ 
k
​ ​​ ​W​j,k​ BP​ ) ) ​u​ i​​ ​u​ j​​​	 (21)

where SBP is a learning rate, ​∆ ​W​i,j​ SBP​  ∈​[0,2SBPuiuj], I is an all-ones 
vector (Ij= 1), Ediag, i( ∙ ) is the same function with that used in SNNs, 
s denotes sigmoid nonlinear activation function, p is a proportional 
factor (p∈ [10%,100%]), and f is a fraction factor (f ∈ [0.1,1]). 
The inclusion of the term uiuj constrains the ​∆ ​W​i,j​ SBP​ ​to the synapses 

made by coactive input and hidden neurons in the spirit of Hebbian 
learning (25).

Learning in the spiking-MLP
Spiking-MLP is an MLP of ANN after replacing activation functions 
with LIF neurons, which is also a special type of SNNs. i, j, and k are 
neuron indices of input, hidden, and output layers, respectively. 
Spiking-MLP applies feedforward information propagation through 
a simpler version of LIF neurons, shown as follows

	​​ V​ j​​(t ) = ​g​ j​​ ​V​ j​​(t − 1 ) (1 − ​S​ j​​(t − 1 ) ) + ​I​ j​​(t)​	 (22)

where Sj(t − 1) is the firing state after membrane potential Vj(t − 1) 
reaching a firing threshold Vth, becoming 1 when Vj(t) ≥ Vth or else 
0 for Vj(t) < Vth. Ij(t) is input current with the simple format of 
​​I​ j​​(t ) = ​∑ i​ ​​ ​W​ i,j​​ ​S​ i​​(t)​. gj is a leaky item [gj∈ (0,1)]. During learning, the 
input signal from datasets is first encoded into spike trains (the same 
as that in previous SNNs) in a time window T. After feedforward 
propagation of spikes, the average firing rates of neurons during T 
in output layers are used for classification and regression. MSE CMLP 
and energy function EMLP are integrated together as the loss func-
tion via the following function

	​​ C​​ MLP​ = ​   1 ─ 2K ​ ​ ∑ 
k=1

​ 
K

  ​​ ​​(​​ ​ 1 ─ T ​ ​ ∑ 
t=1

​ 
T
 ​​ ​S​ k​​(t ) − ​o​ k​​​)​​​​ 

2

​​	 (23)

where ok is the expected firing rate and K is the total number of 
output layers. EMLP is the same as ERBM in Eq. 19 but using spikes 
Si(t), Sj(t), and Sk(t) instead of firing rates ui(t), uj(t), and uk(t). Other 
calculations of Closs and ​∆ ​W​i,j​ SBP​​ are the same as those in Eqs. 20 and 
21. The p-BP (11, 40) is used for getting around the nondifferential 
feature of spiking-MLP during training by directly giving an approxi-
mate finite number (here is 1 for simplicity) to replace the infinite 
gradient (at a neighborhood of Vth) during the gradient BP.

Accuracy definition
In our experiments, the accuracy of MNIST or DvsGesture is defined 
as the number of correctly identifying samples dividing by the 
number of all samples. Different from it, the accuracy of NETtalk is 
defined as the cosine similarity distance of identified phonemes and 
real phonemes for the consideration of the multiphonemes in the 
same sample.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abh0146

REFERENCES AND NOTES
	 1.	 D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-

propagating errors. Nature 323, 533–536 (1986).
	 2.	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
	 3.	 G. E. Hinton, P. Dayan, B. J. Frey, R. M. Neal, The “wake-sleep” algorithm for unsupervised 

neural networks. Science 268, 1158–1161 (1995).
	 4.	 S. Z. Muller, A. N. Zadina, L. F. Abbott, N. B. Sawtell, Continual learning in a multi-layer 

network of an electric fish. Cell 179, 1382–1392.e10 (2019).
	 5.	 H. Jaeger, Artificial intelligence: Deep neural reasoning. Nature 538, 467–468 

(2016).
	 6.	 G. Zeng, Y. Chen, B. Cui, S. Yu, Continual learning of context-dependent processing 

in neural networks. Nat. Mach. Intell. 1, 364–372 (2019).
	 7.	 W. Maass, Networks of spiking neurons: The third generation of neural network models. 

Neural Netw. 10, 1659–1671 (1997).

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

https://science.org/doi/10.1126/sciadv.abh0146
https://science.org/doi/10.1126/sciadv.abh0146


Zhang et al., Sci. Adv. 2021; 7 : eabh0146     20 October 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

11 of 11

	 8.	 L. F. Abbott, B. DePasquale, R. M. Memmesheimer, Building functional networks 
of spiking model neurons. Nat. Neurosci. 19, 350–355 (2016).

	 9.	 W. Nicola, C. Clopath, Supervised learning in spiking neural networks with FORCE 
training. Nat. Commun. 8, 2208 (2017).

	 10.	 E. O. Neftci, H. Mostafa, F. Zenke, Surrogate gradient learning in spiking neural networks: 
Bringing the power of gradient-based optimization to spiking neural networks. IEEE Sig. 
Process. Mag. 36, 51–63 (2019).

	 11.	 C. Lee, S. S. Sarwar, P. Panda, G. Srinivasan, K. Roy, Enabling spike-based backpropagation 
for training deep neural network architectures. Front. Neurosci. 14, 119 (2020).

	 12.	 D. Huh, T. J. Sejnowski, Advances in Neural Information Processing Systems (Curran 
Associates Inc., 2018), vol. 31, pp. 1433–1443.

	 13.	 S. M. Bohte, J. N. Kok, H. La Poutre, Error-backpropagation in temporally encoded 
networks of spiking neurons. Neurocomputing 48, 17–37 (2002).

	 14.	 G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, W. Maass, A solution 
to the learning dilemma for recurrent networks of spiking neurons. Nat. Commun. 11, 
3625 (2020).

	 15.	 S. Jia, T. Zhang, X. Cheng, H. Liu, B. Xu, Neuronal-plasticity and reward-propagation 
improved recurrent spiking neural networks. Front. Neurosci. 15, 654786 (2021).

	 16.	 R. Kim, Y. Li, T. J. Sejnowski, Simple framework for constructing functional spiking 
recurrent neural networks. Proc. Natl. Acad. Sci. U.S.A. 116, 22811–22820 (2019).

	 17.	 S. Song, K. D. Miller, L. F. Abbott, Competitive Hebbian learning through spike-timing-
dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000).

	 18.	 F. Zenke, E. J. Agnes, W. Gerstner, Diverse synaptic plasticity mechanisms orchestrated 
to form and retrieve memories in spiking neural networks. Nat. Commun. 6, 6922 (2015).

	 19.	 R. S. Zucker, Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).
	 20.	 T. Zhang, Y. Zeng, D. Zhao, B. Xu, Brain-inspired balanced tuning for spiking neural 

networks, in Proceedings of the Twenty-Seventh International Joint Conference on Artificial 
Intelligence (IJCAI, 2018), pp. 1653–1659.

	 21.	 T. J. Teyler, P. DiScenna, Long-term potentiation. Annu. Rev. Neurosci. 10, 131–161 (1987).
	 22.	 T. V. Bliss, G. L. Collingridge, A synaptic model of memory: Long-term potentiation 

in the hippocampus. Nature 361, 31–39 (1993).
	 23.	 M. Ito, Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989).
	 24.	 Y. Dan, M. M. Poo, Spike timing-dependent plasticity of neural circuits. Neuron 44, 23–30 

(2004).
	 25.	 Y. Bengio, T. Mesnard, A. Fischer, S. Zhang, Y. Wu, STDP-compatible approximation 

of backpropagation in an energy-based model. Neural Comput. 29, 555–577 (2017).
	 26.	 R. M. Fitzsimonds, H. J. Song, M. M. Poo, Propagation of activity-dependent synaptic 

depression in simple neural networks. Nature 388, 439–448 (1997).
	 27.	 G. Bi, M. Poo, Synaptic modification by correlated activity: Hebb’s postulate revisited. 

Annu. Rev. Neurosci. 24, 139–166 (2001).
	 28.	 J. L. Du, H. P. Wei, Z. R. Wang, S. T. Wong, M. M. Poo, Long-range retrograde spread of LTP 

and LTD from optic tectum to retina. Proc. Natl. Acad. Sci. U.S.A. 106, 18890–18896 
(2009).

	 29.	 J. L. Du, M. M. Poo, Rapid BDNF-induced retrograde synaptic modification in a developing 
retinotectal system. Nature 429, 878–883 (2004).

	 30.	 H.-Z. W. Tao, L. I. Zhang, G.-Q. Bi, M.-M. Poo, Selective presynaptic propagation 
of long-term potentiation in defined neural networks. J. Neurosci. 20, 3233–3243 
(2000).

	 31.	 M. Tsodyks, K. Pawelzik, H. Markram, Neural networks with dynamic synapses. Neural 
Comput. 10, 821–835 (1998).

	 32.	 P. U. Diehl, M. Cook, Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015).

	 33.	 T. Zhang, Y. Zeng, D. Zhao, M. Shi, A plasticity-centric approach to train the non-
differential spiking neural networks, in Proceedings of the AAAI Conference on Artificial 
Intelligence (AAAI, 2018).

	 34.	 B. Scellier, Y. Bengio, Equilibrium propagation: Bridging the gap between energy-based 
models and backpropagation. Front. Comput. Neurosci. 11, 24 (2017).

	 35.	 Y. LeCun, The MNIST database of handwritten digits (1998); http://yann.lecun.com/exdb/mnist/.

	 36.	 T. J. Sejnowski, C. R. Rosenberg, Parallel networks that learn to pronounce English text. 
Complex Syst. 1, 145–168 (1987).

	 37.	 A. Amir, B. Taba, D. Berg, T. Melano, J. Mckinstry, C. Di Nolfo, T. Nayak, A. Andreopoulos, 
G. Garreau, M. Mendoza, J. Kusnitz, M. Debole, S. Esser, T. Delbruck, M. Flickner, D. Modha, 
A low power, fully event-based gesture recognition system, in Proceedings of the 2017 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR, 2017), pp. 7243–7252.

	 38.	 H. Hazan, D. Saunders, D. T. Sanghavi, H. Siegelmann, R. Kozma, Unsupervised learning 
with self-organizing spiking neural networks, in Proceedings of the 2018 International Joint 
Conference on Neural Networks (IJCNN) (IEEE, 2018), pp. 1–6.

	 39.	 T. Zhang, S. Jia, X. Cheng, B. Xu, Tuning convolutional spiking neural network 
with biologically plausible reward propagation. IEEE Trans. Neural Netw. Learn. Syst. 
(2021).

	 40.	 S. Wozniak, A. Pantazi, T. Bohnstingl, E. Eleftheriou, Deep learning incorporating 
biologically inspired neural dynamics and in-memory computing. Nat. Mach. Intell. 2, 
325–336 (2020).

	 41.	 Y. Wu, L. Deng, G. Li, J. Zhu, L. Shi, Spatio-temporal backpropagation for training 
high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018).

	 42.	 G. Q. Bi, M. M. Poo, Synaptic modifications in cultured hippocampal neurons: 
Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 
18, 10464–10472 (1998).

	 43.	 R. C. Froemke, Y. Dan, Spike-timing-dependent synaptic modification induced by natural 
spike trains. Nature 416, 433–438 (2002).

	 44.	 K. Kobayashi, M. M. Poo, Spike train timing-dependent associative modification 
of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41, 445–454 (2004).

	 45.	 T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, G. Hinton, Backpropagation 
and the brain. Nat. Rev. Neurosci. 21, 335–346 (2020).

	 46.	 F. Crick, The recent excitement about neural networks. Nature 337, 129–132 (1989).
	 47.	 T. Hokfelt, O. Johansson, M. Goldstein, Chemical anatomy of the brain. Science 225, 

1326–1334 (1984).
	 48.	 T. P. Lillicrap, D. Cownden, D. B. Tweed, C. J. Akerman, Random synaptic feedback 

weights support error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016).
	 49.	 A. Meulemans, F. S. Carzaniga, J. Suykens, J. Sacramento, B. F. Grewe, A theoretical 

framework for target propagation, in Advances in Neural Information Processing Systems, 
H. Larochelle, M. A. Ranzato, R. Hadsell, M.-F. Balcan, H.-T. Lin, Eds. (Curran Associates Inc., 
2020), vol. 33, pp. 20024–20036.

Acknowledgments: We thank M. Shi for refining Fig. 1 and fig. S1. Funding: This work was 
supported by the National Key R&D Program of China (2020AAA0104305); the National 
Natural Science Foundation of China (61806195); the Strategic Priority Research Program of 
the Chinese Academy of Sciences (XDA27010404 and XDB32070000); the Key Research 
Program of Frontier Sciences, Chinese Academy of Sciences (QYZDY-SSW-SMCO01); the 
International Partnership Program of Chinese Academy of Sciences (153D31KYSB20170059); 
the Shanghai Municipal Science and Technology Major Project (2018SHZDZX05); and the 
Shanghai Key Basic Research Project (18JC1410100). Author contributions: B.X., T.Z., Y.Z., and 
M.-m.P. designed the study. T.Z., B.X., X.C., and S.J. performed the experiments and analyses. 
M.-m.P., B.X., T.Z., and Y.Z. wrote the paper. Competing interests: The authors declare that 
they have no competing interests. Data and materials availability: All data needed to 
evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. All source codes can be downloaded from https://doi.org/10.5281/zenodo.5278798.

Submitted 9 February 2021
Accepted 27 August 2021
Published 20 October 2021
10.1126/sciadv.abh0146

Citation: T. Zhang, X. Cheng, S. Jia, M.-m. Poo, Y. Zeng, B. Xu, Self-backpropagation of synaptic 
modifications elevates the efficiency of spiking and artificial neural networks. Sci. Adv. 7, eabh0146 
(2021).

D
ow

nloaded from
 https://w

w
w

.science.org at Institute for B
asic Science on January 21, 2022

http://yann.lecun.com/exdb/mnist/
https://doi.org/10.5281/zenodo.5278798


Use of think article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Self-backpropagation of synaptic modifications elevates the efficiency of spiking
and artificial neural networks
Tielin ZhangXiang ChengShuncheng JiaMu-ming PooYi ZengBo Xu

Sci. Adv., 7 (43), eabh0146. • DOI: 10.1126/sciadv.abh0146

View the article online
https://www.science.org/doi/10.1126/sciadv.abh0146
Permissions
https://www.science.org/help/reprints-and-permissions D

ow
nloaded from

 https://w
w

w
.science.org at Institute for B

asic Science on January 21, 2022

https://www.science.org/about/terms-service

