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Learning and attention reveal a
general relationship between
population activity and behavior
A. M. Ni, D. A. Ruff, J. J. Alberts, J. Symmonds, M. R. Cohen*

Prior studies have demonstrated that correlated variability changes with cognitive processes
that improve perceptual performance.We tested whether correlated variability covaries
with subjects’ performance—whether performance improves quickly with attention or slowly
with perceptual learning.We found a single, consistent relationship between correlated
variability and behavioral performance, regardless of the time frame of correlated variability
change.This correlated variability was oriented along the dimensions in population space
used by the animal on a trial-by-trial basis to make decisions.That subjects’ choices
were predicted by specific dimensions that were aligned with the correlated variability
axis clarifies long-standing paradoxes about the relationship between shared variability
and behavior.

T
he responses of pairs of neurons to re-
peated presentations of the same stimu-
lus are typically correlated [quantified as
noise correlations, or spike count correla-
tions (rSC)] (1, 2). Prior electrophysiological

studies have shown that these correlations change
with cognitive processes that affect perceptual
performance (2–4). However, theoretical work
has suggested that this correlated variabilitymay
not affect the information encoded by a neuronal
population in a manner that influences a sub-
ject’s decisions (5, 6).

We therefore measured the relationship be-
tween neuronal population activity and per-
formance by studying two processes that both
improve visual performance but on very dif-
ferent time scales: attention (7) and percep-
tual learning (8). By observing attention and
learning in the same behavioral trials and
neuronal populations, we identified the dimen-
sions of population activity that matter most for
behavior.
We recorded from neuronal populations in V4

(3, 4, 7–9) in two rhesus monkeys with chron-

ically implanted microelectrode arrays (3). The
monkeys detected changes in the orientation of
either of two Gabor stimuli (Fig. 1A): one placed
within the receptive fields (RFs) of the recorded
neurons and one in the opposite hemifield (Fig.
1B). We measured attention effects within a
single session and learning effects across sessions
(Fig. 1C).
Attention and perceptual learning improved

performance and affected neuronal population
responses in similar ways (Fig. 2 and figs. S1 and
S2). Both processeswere associatedwith decreases
in the mean-normalized trial-to-trial variance
(Fano factor) of individual units and the cor-
related variability between pairs of units (Fig. 2,
C, D, J, and K) in response to repeated presenta-
tions of the same stimulus (figs. S3 and S4).
These variability changes occurred only in the
context of the task (variability measured dur-
ing passive fixation was constant throughout
training) (Fig. 2, F, G, M, and N).
Recent theoretical work suggests that only

correlated variability along the dimensions in
neuronal population space that encode task-
relevant stimulus information can limit informa-
tion coding (5, 6). Determining whether correlated
variability lies along these dimensions is exper-
imentally unfeasible because it would require
recordings from a very large number of neurons
over an even larger number of trials.
Instead, we assessed the importance of

attention- andperceptual learning–related changes
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Fig. 1. Methods and behavior. (A) Orientation change-detection task with cued attention (3). (B) RF
centers of recorded units from example session (black circles). Gray circles illustrate Gabor locations; the
red circle illustrates representative RF size. (C) Methodology for quantifying attention- and learning-related
changes in detection sensitivity (d′). Best-fitting exponential functions plotted with SEM. Heat map
illustrates session number. (Insets) Psychometric curves for two example sessions.
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in correlated variability by investigating their
relationship to behavior. There was a single,
robust relationship between correlated variability
and perceptual performance, whether changes in
performance happened quickly (attention) (Fig. 3,
A and B) or slowly (learning) (Fig. 3, C and D).
This relationship was robust even when we re-
moved the main effects of attention and learning
(Fig. 3, E and F).
We analyzed the responses of V1 neurons

(7, 8) in animals performing the same atten-
tion task. Unlike in V4, correlated variability in
V1 was not correlated with performance (fig. S5).
Both attention and perceptual learning im-

proved the performance of a cross-validated,
optimal linear stimulus decoder (fig. S6). How-
ever, the relationship between correlated varia-
bility in V4 and performance (Fig. 3) seems at
odds with theoretical work that suggests most
correlated variability should not affect the stim-
ulus information that can be gleaned from an
optimal decoder (6).
To examine the relationship between cor-

related variability and performancemore directly,
we developed a single-trial measure of correlated
variability. We performed principal component
analysis (PCA) on population responses to the
same repeated stimuli used to compute spike
count correlations (fig. S3),meaning that the first
PC is by definition the axis that explains more of
the correlated variability than any other dimen-
sion (Fig. 4, A and B, x axis). Consistent with the
recent observation that correlated variability is
typically low dimensional (10–12), the variance
explained by the first PC was strongly related
to themagnitude of correlated variability in each
session, evenwhenwe accounted for the changes
caused by attention and learning (Fig. 4, C andD,
and fig. S7) and trial-averaged firing rates (figs.
S8 to S11). Like correlated variability (Fig. 3),
the proportion of variance explained by the first
PC was correlated with behavioral performance
(d ′) across all sessions [Monkey 1, correlation
coefficient (R) = –0.42, P < 10−13; Monkey 2,
R = –0.62, P < 10−15].
These analyses show that projection on this

first PC is a suitable proxy for pairwise spike
count correlations. We used this measure to
assess the importance of correlated variability
to the monkey by determining whether popula-
tion activity along this first PC can predict the
monkey’s choices on a trial-by-trial basis.
Activity along this first PC (and therefore

correlated variability) had a much stronger re-
lationship with the monkey’s behavior than it
would if the monkey used an optimal stimulus
decoder. A linear, cross-validated choice decoder
(Fig. 4A) could detect differences in hit versus
miss trial responses to the changed stimulus from
V4 population activity along the first PC alone as
well as it could from our full data set (Fig. 4, E
and F, and fig. S12). By contrast, although the
performance of the stimulus decoder (Fig. 4A)
at detecting differences in V4 neuronal popula-
tion responses to the previous stimulus (the
stimulus before the change) versus the changed
stimulus was unsurprisingly better overall than

the performance of the choice decoder (Fig. 4,
E and F, insets), the relative influence of the
first PC was weaker. The performance of the
stimulus decoder was much worse when based
on the first PC alone versus our full data set
(Fig. 4, E and F).
It is difficult to determine from extracellular

recordingswhether choice-predictive signals come
from a bottom-up, causal relationship between
sensory responses and decisions or from trial-to-
trial variability from cognitive factors or post-
decision signals (13). A recent study identifying
the directionality of choice-predictive signals in
mouse sensory cortex found that they are both
bottom-up and top-down in origin (14). However,
the time course of the choice-predictive activity
in our data suggests that it occurs before the
decision is made. We based our choice decoder
on the first 70 ms of the evoked responses (after
accounting for the response latency of V4 neu-
rons). Choice-predictive activity was as strong
in the first half of this time frame (60 to 95 ms)
as in the second half (96 to 130 ms; paired t test
permonkey, P > 0.05). That the choice-predictive
activity described here was present during the
full decision-making period suggests that it did
not reflect post-decision feedback.
Our results, combined with functional imag-

ing in humans (8) and other multielectrode re-
cording studies (15, 16), suggest that learning is

best studied by focusing on populations of neu-
rons. Functional imaging studies, which usemea-
sures that are related to the activity of large
neural populations, find consistent learning-
related changes in both V1 and V4 (8, 17), as
opposed to single-unit studies (8). Similarly,
attention studies suggest that changes in pop-
ulation sensitivity are largely explained by cross-
neuron correlations as opposed to single-neuron
effects (3, 4).
The robust relationship between correlated

variability and perceptual performance suggests
that although attention and learningmechanisms
act on different time scales (fig. S13), they share
a common computation. Some characteristics
of this computation are informedby recent studies
showing that changes in a low rankmodulator can
account for the attention-related changes in rate,
Fano factor, and correlated variability (11, 12). At-
tention and learning may decrease the strength of
such a modulator by changing the balance of in-
hibition and excitation (10), which may improve
information coding and the information that is
communicated downstream (18).
Our most puzzling finding is that the

attention- and learning-related changes in
average noise correlation were so closely linked
to performance but would likely have a minimal
effect on performance if the monkeys read out
visual information optimally. Similarly, a prior

Ni et al., Science 359, 463–465 (2018) 26 January 2018 2 of 3

M
on

ke
y 

1

D
et

ec
tio

n 
ta

sk

M
on

ke
y 

2

Performance Evoked response Fano factor Noise correlation

D
et

ec
tio

n 
ta

sk

P
as

si
ve

fix
at

io
n

P
as

si
ve

fix
at

io
n

Uncued location

Cued location

S.E.M.

Session
100

P
er

fo
rm

an
ce

 (
d'

)

-1

0 

1 

2 

3 

4 

1

Session
50

P
er

fo
rm

an
ce

 (
d'

)
-1

0 

1 

2 

3 

4 

1

100

E
vo

ke
d 

re
sp

on
se

(s
p/

s)

0 

20

40

60

1

50

E
vo

ke
d 

re
sp

on
se

(s
p/

s)

0 

20

40

60

1

1  100

F
an

o 
fa

ct
or

1.0  
1.2
1.4
1.6
1.8
2.0  

1 50

F
an

o 
fa

ct
or

1.0
1.2
1.4
1.6
1.8
2.0

1  100

F
an

o 
fa

ct
or

1.0
1.2
1.4
1.6
1.8
2.0

1 50

F
an

o 
fa

ct
or

1.0
1.2
1.4
1.6
1.8
2.0

1  100

r S
C

0  

0.1

0.2

0.3

0.4

1  100

r S
C

0  

0.1

0.2

0.3

0.4

1 50

r S
C

0  

0.1

0.2

0.3

0.4

1 50

r S
C

0  

0.1

0.2

0.3

0.4

1  100

E
vo

ke
d 

re
sp

on
se

(s
p/

s)

0 

20

40

60

1 50
0 

20

40

60

E
vo

ke
d 

re
sp

on
se

(s
p/

s)

Fig. 2. Summary of behavioral and neuronal effects of attention and perceptual learning. All
changes were significantly different than 0 except where indicated (t tests; P < 10−3). Conventions are as
in Fig. 1C. (A and H) Sensitivity (d′) increased with both attention and learning. (B, E, I, and L) Evoked
response (firing – baseline rate) increased with attention but did not change consistently with learning or
passive fixation (P > 0.05). (C, D, J, and K) Fano factor and correlated variability decreased with
attention and learning, but (F,G, M, and N) not during passive fixation (P > 0.05).

RESEARCH | REPORT
on January 25, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


study found that correlations depend on training
experience but did not find a relationship be-
tween shared variability and information coding
(19). Correlated variability should only affect
the performance of an optimal decoder when it
is aligned with the stimulus dimension being
decoded (6). Therefore, the relationship between
correlated variability and performance suggests
that our monkeys performed suboptimally.
We thus hypothesize that sensory information

is decoded in a way that is optimal for the large

number of stimuli and tasks that the animals
encounter in their natural environment rather
than the particular set of stimuli in our task. Tra-
ditionally, optimal decoders are trained to dis-
criminate a particular set of stimuli that vary
only in one stimulus dimension. This scenario
implies a two-step decision process: identifying
the stimulus (to optimize the decoder) and then
decoding it. If animals could successfully identify
the stimulus, theywould perform perfectly on our
change-detection task.

Instead, animals may use a more general de-
coder that could, for example, identify the orien-
tation of any stimulus in any task, meaning that
optimal weights would be tuned and noise cor-
relations related to all stimulus features for which
the neurons are selective. Noise correlations de-
pend on tuning similarity for all stimulus fea-
tures (6). Therefore, correlated variability is likely
aligned with the dimension that is decoded by a
general decoder, meaning that noise correlation
decreases would improve performance. Several
of the studies that suggest monkeys do behave
optimally are those that usedmultisensory stimu-
li (20). Determining whether there is evidence
that monkeys use decoders that are optimized
for diverse stimuli and taskswill be an important
avenue for future work. Our results suggest that
the relationship between behavior and popula-
tion activity is a powerful tool for understanding
neural computation.
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Fig. 3. The relationship
between correlated
variability and
performance is the
same for attention and
perceptual learning.
Mean rSC and d′ were sig-
nificantly correlated across
sessions (P < 10−3).
(A and B) Relationship
between rSC and d′
was indistinguishable
between attention
conditions (Fisher z Pearson-
Filon tests; P > 0.05).
(C and D) Relationship
between rSC and d′ was
indistinguishable for
the first versus second
half of learning (P > 0.05).
(E and F) Relationships persisted after removing attention and learning effects (residuals of exponential
fits in Fig. 2; P < 10−3; analyses of variance, P > 0.05).
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Materials and Methods 
 The subjects were two adult male rhesus monkeys (Macaca mulatta, 8 and 10 kg). 

All animal procedures were approved by the Institutional Animal Care and Use 
Committees of the University of Pittsburgh and Carnegie Mellon University. 

 
Experimental Design 

 The objective of the study design was to measure the behavioral and neuronal 
effects of both attention and perceptual learning in the same subjects and neuronal 
populations, using the same task and task trials, such that we could analyze and compare 
the effects of those two perceptual processes on the activity of simultaneously recorded 
neurons from visual area V4. 
 We used an orientation change-detection task for three reasons. First, it allowed 
us to directly compare the effects of learning (and of attention) on neuronal population 
activity to those in our previous studies (3). Second, because the stimuli preceding the 
orientation change are identical throughout each recording session, this task provides a 
very large number of presentations of the same visual stimulus, which is useful for 
calculating noise correlations and projections onto axes of correlated variability. Finally, 
these stimuli elicit robust responses in V4 neurons, which have well-characterized tuning 
curves for orientation.  

 
Behavioral Task 

 As previously described (3), in this orientation-change detection task with cued 
attention, each monkey fixed their gaze on a small, central spot while two peripheral 
Gabor stimuli (one overlapping the receptive fields of the recorded neurons, the other in 
the opposite visual hemifield) synchronously flashed on (for 200 ms) and off (for a 
randomized period between 200-400 ms) until, at a randomized time, the orientation of 
one of the stimuli was different from that of preceding stimuli (fig. 1A). The monkey 
received a liquid reward for making a saccade to the stimulus that changed. Attention was 
cued in blocks of 125 trials, and a single session consisted of one block of trials with 
attention cued to the left and one block of trials with attention cued to the right. In each 
session, the orientation change occurred at the cued stimulus in 80% of trials, and at the 
uncued (i.e., miscued) stimulus in 20% of trials (all uncued changes used either the 
middle or largest orientation change). 

 Before recording, the monkeys were briefly trained on the basic task and the 
meaning of the attention cue. First, each monkey was trained to report only 90° changes 
with the attention cue in place. Next, each monkey was trained on the full version of the 
task, which presented five orientation change amounts (fig. 1C, insets). We began 
recording after 2-5 days of training on the full version of the task, once the monkey’s 
behavior was stable enough to produce reliable fits of the Weibull function to the 
psychometric data. The size, location, and spatial frequency of the Gabor stimuli were 
fixed throughout learning. The orientation of all stimuli before the orientation change was 
consistent throughout each recording session but changed by 15° between days.  

 Performance on the task was quantified as detection sensitivity (d’), though other 
behavioral measures gave qualitatively similar results (fig. S1). Sensitivity was calculated 
for a single orientation change amount per animal (Monkey 1: 29°, Monkey 2: 10°) 
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throughout all sessions and both attention conditions, based on the Weibull function fit to 
the psychometric data collected per session. 

 
Recordings 

 We recorded extracellularly from single units and sorted multiunit clusters (the 
term “unit” refers to either) in V4 of the left hemisphere using 96-channel microelectrode 
arrays (Blackrock Microsystems) as previously described (3). We presented visual 
stimuli and tracked eye position as previously described (9).  

 The population size of simultaneously recorded units was 19-42 units (mean 34) 
per session for Monkey 1 and 6-25 units (mean 15) per session for Monkey 2. The total 
number of simultaneously recorded unit pairs was 171-861 unit pairs (mean 561) per 
session for Monkey 1 and 15-300 unit pairs (mean 105) per session for Monkey 2. 

 The data presented are from 42 d of recording for Monkey 1 and 28 d of recording 
for Monkey 2. Each day consisted of 1-7 sessions (mean of 3.6/d for Monkey 1; 2.9/d for 
Monkey 2), for a total of 150 sessions for Monkey 1 and 78 sessions for Monkey 2. 
Across all sessions, the data presented are from 84,554 unit pairs for Monkey 1 and 8,643 
unit pairs for Monkey 2. 

 Data were collected during passive fixation on 35 d for Monkey 1 and 22 d for 
Monkey 2.  

 
Statistical Analysis 

 We based most neuronal analyses on spike count responses between 60-260 ms 
after stimulus onset (see Decoders section below for exceptions). All analyses used 
stimulus presentations from correct and miss trials only (i.e., trials in which an orientation 
change occurred). To minimize the impact of adaptation on our results, we did not 
analyze the first stimulus presentation in each trial.  

 We only analyzed a recorded unit if its stimulus-driven firing rate was 
significantly higher than baseline (Wilcoxon signed rank test; p < 10-10). We only 
included complete sessions, and excluded sessions from analyses if average baseline 
activity across included units was less than 20 Hz, and outlier sessions were excluded 
from analyses based on the Tukey method.  

 We fit sets of data across all sessions with the following exponential equations. 
For exponential decay of increasing form: 

y = a(1− e−bx )+ c  
 For exponential decay of decreasing form:  

y = ae−bx + c  
 For fig. 2, attention effects were quantified with a paired t-test comparing cued vs. 

uncued trials within each session, and learning effects were quantified during the cued 
attention condition only with a two-tailed t-test comparing sessions from the first vs. the 
second half of the total training period, without assuming equal variances. 

 For fig. 3, we compared the correlation between two variables in the cued 
attention condition to the correlation between the same two variables in the uncued 
attention condition using the ZPF test for dependent but non-overlapping Pearson 
correlation coefficients (21). In fig. 3, E and F, we plotted the residuals of the exponential 
fits for detection sensitivity (d’) and correlated variability (rSC) illustrated in fig. 2, A, D, 
H, and K. To test whether the residuals of the exponential fits for d’ and rSC contained 
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attention- or learning-related trends not captured by the exponential fits, we ran an 
ANOVA per monkey to test the effects of session number and attention condition on the 
d’ residual, and an ANOVA per monkey to test the effects of those same two variables on 
the rSC residual. 

 
Correlated Variability 

 We defined the correlated variability of each pair of units (quantified as spike 
count correlation or rSC (2)) as the Pearson correlation coefficient between the responses 
of the two units to repeated presentations of the same stimulus. This measure of rSC 
represents correlations in noise rather than signal because the visual stimulus was always 
the same.  

 To calculate the rSC of one pair of units during one attention condition of one 
session, we calculated the Pearson correlation between responses to repeated 
presentations of the stimuli before the orientation change (fig. S3A). These stimuli were 
the same on every trial in each session (and during all sessions recorded within the same 
day). We included responses to all stimuli presented prior to the orientation change 
(except for the first stimulus presentation in each trial, to minimize adaptation effects), 
during all trials that culminated in an orientation change (see Statistical Analysis section 
above). We calculated rSC separately for each attention condition. A unit’s response to 
each stimulus was defined as the firing rate of that unit during the 60-260 ms time 
window after stimulus onset. 
 
Principal Component Analysis 

 We calculated the principal components for each session of training and for each 
attention condition, so that we could compare data across sessions of training to analyze 
perceptual learning effects, and within a single session to analyze attention effects. 

 For a single session of training, and a single attention condition, we created a 
matrix of all of the simultaneously recorded units from that session, and all of the 
included stimuli (the same stimuli used to calculate rSC as described in the Correlated 
Variability section above) from all of the included trials (see Statistical Analysis section 
above) recorded in that attention condition that session. We then ran principal component 
analysis (PCA) on this data matrix. All of the units were included into the PCA, and the 
PCA pulled the principal components of the entire data matrix.  
 
Decoders 

 The optimal stimulus decoder (fig. S6) was a linear classifier with leave-one-out 
cross-validation that was trained to discriminate the responses of the neuronal population 
to the stimulus before the change (the previous stimulus) from the responses of the 
neuronal population to the changed stimulus. We quantified the performance of the 
decoder as the proportion of leave-one-out trials that the decoder discriminated correctly. 
We measured decoder performance as a function of population size, from a single 
recorded unit through the maximum number of simultaneously recorded units. The 
maximum number of simultaneously recorded units per monkey was based on classifier 
constraints on the pooled covariance matrix (Monkey 1: 30 units; Monkey 2: 10 units). 
We randomly selected subsets of simultaneously recorded units without replacement 
1000 times for each population size. To maximize the number of behavioral trials, we 
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analyzed all trials in a given day together, focusing only on trials that presented the 
middle orientation change amount, for which we had collected trials with both cued and 
uncued orientation changes. Because the middle orientation change amount varied across 
recording days, we matched the distributions of orientation change amounts across 
learning in all analyses (after mean matching, n = 37 d for Monkey 1, n = 10 d for 
Monkey 2).  

 To avoid artifacts in neuronal firing rates due to eye movements in response to the 
changed stimulus, we performed decoder analysis on the changed and previous stimulus 
responses with an abbreviated time window: spike count stimulus responses were 
measured between 60-130 ms after stimulus onset.  

 The PCA stimulus decoder (Stimulus decoder; fig. 4A), like the optimal stimulus 
decoder, was a linear classifier with leave-one-out cross-validation that was trained to 
discriminate the neuronal population activity in response to the previous stimulus from 
the neuronal population activity in response to the changed stimulus. However, while we 
measured the performance of the optimal stimulus decoder as a function of population 
size, we measured the performance of the PCA stimulus decoder as a function of number 
of PCs (from the 1st PC only to the maximum testable number of PCs), to test whether the 
performance of the PCA stimulus decoder improved with increasing number of included 
PCs.  

 To calculate the PCs of the neuronal population activity in response to the 
previous stimulus as well as the PCs of the neuronal population activity in response to the 
changed stimulus, we first calculated the PCs of the neuronal population activity in 
response to the previous stimulus (as described in the Principal Component Analysis 
section above). The neuronal population activity in response to the previous stimuli and 
the neuronal population activity in response to the changed stimuli were both projected 
onto those PCs, such that the responses to both the previous and changed stimuli were 
projected onto identical PCs.  

 The PCA choice decoder (Choice decoder; fig. 4A) was a linear classifier with 
leave-one-out cross-validation that was trained to discriminate the neuronal population 
activity in response to correct choices (hits; when the monkey correctly responded to a 
changed stimulus) from the neuronal population activity in response to incorrect choices 
(misses; when the monkey did not respond to a changed stimulus). Thus, the PCA choice 
decoder discriminated neuronal population activity based on the monkey’s trial-by-trial 
choices, with decoder performance quantified as the proportion of leave-one-out trials for 
which the decoder correctly discriminated the monkey’s choice. 

 Like with the PCA stimulus decoder, we projected the neuronal population 
activity in response to correct choices as well as the neuronal population activity in 
response to incorrect choices onto the same PCs, the PCs of the neuronal population 
activity in response to the previous stimulus. Thus, all neuronal activity, whether for the 
PCA stimulus decoder or for the PCA choice decoder, was projected onto identical PCs.   
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Fig. S1 

 

 

 
 
 
 
Fig. S1. All behavioral measures were correlated. Though the perceptual performance 
of each monkey was represented in this study by the monkey’s sensitivity (d’), other 
behavioral measures gave qualitatively similar results to sensitivity. Each point represents 
one attention condition (cued or uncued) for a single session. (A) Sensitivity (d’) vs. 
criterion for Monkey 1. Pearson correlation coefficients: cued: R = -0.78, p < 10-32; 
uncued: R = -0.80, p < 10-31. (B) Same for Monkey 2. Cued: R = -0.64, p < 10-10; uncued: 
R = -0.64, p < 10-10. (C) Sensitivity vs. hit rate for Monkey 1. Cued: R = 0.92, p < 10-62; 
uncued: R = 0.93, p < 10-59. (D) Same for Monkey 2. Cued: R = 0.85, p < 10-22; uncued: R 
= 0.88, p < 10-17. (E) Sensitivity vs. threshold for Monkey 1. Cued: R = -0.75, p < 10-27; 
uncued: R = -0.70, p < 10-18. (F) Same for Monkey 2. Cued: R = -0.65, p < 10-10; uncued: 
R = -0.45, p < 10-3. Number of sessions: Monkey 1: n = 150, Monkey 2: n = 78. 
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Fig. S2 

 

 

 
 
 
 
Fig. S2. Behavioral improvement was specific to the trained location. For one subject 
(Monkey 1), we demonstrated that, as in traditional perceptual learning paradigms, the 
learning-related improvement in perceptual sensitivity (d’) was specific to the trained 
location. (A) Monkey 1 was trained at location 1 first (the location that overlapped the 
receptive fields of the recorded units; blue circle), then at location 2, a nearby location 
(green circle). The monkey fixated a point at the center of the screen (red cross). (B) As 
with location 1, the monkey required training to reach a high level of sensitivity (d’) at 
location 2. Plot follows format of fig. 1C. Sensitivity (d’) increased with both attention (p 
< 10-5) and learning (p < 10-3). Number of sessions = 82. 
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Fig. S3 

 
 
 

 
 
 
 

Fig. S3. Calculation of correlated variability (rSC). (A) The correlated variability (noise 
correlation, or, spike count correlation (rSC)) of each pair of units was calculated based on 
spike count responses to repeated presentations of the stimuli before the orientation 
change (which were the same on every trial in a given session). The first stimulus 
presentation of each trial was excluded to minimize adaptation effects. Only the stimuli 
from correct response and missed response trials (i.e., trials in which an orientation 
change occurred) were included in the calculation of rSC. (B) The correlation matrix is 
based on the number of units by number of stimulus presentations matrix of spike count 
responses to all included stimulus presentations. The rSC for each pair is the entry of the 
resulting correlation matrix that reflects the Pearson’s correlation coefficient between the 
responses of the two units. For most analyses (unless otherwise noted), we report the 
average rSC across all simultaneously recorded pairs in each session. 
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Fig. S4 

 

 
 
 
Fig. S4. Decreases in neuronal variability were not due to changes in eye movement 
variability. In theory, the decreases in Fano factor and correlated variability attributed to 
attention and perceptual learning in fig. 2 could be caused by attention- and perceptual 
learning-related differences in eye movement variance (though attention-related 
differences would be due to differences in eye movement variance between when the 
monkey attended to the stimulus in the receptive fields of the recorded neurons and when 
it attended the other stimulus). To control for this possibility, we matched the 
distributions of eye position variance across attention conditions and sessions. We found 
that the attention- and learning-related changes in response variability were present even 
in these subsets of data with matched eye position variance. Each plot follows the format 
of fig. 1C. Attention and perceptual learning effects quantified as per fig. 2. (A) Eye x-
position variance was matched across attention conditions (p = 0.72) and across sessions 
to match across learning (p = 0.20) for Monkey 1. (B) Same for Monkey 2 (attention: p = 
0.40; learning: p = 0.17). (C) Same for eye y-position variance for Monkey 1 (attention: p 
= 0.30; learning: p = 0.64). (D) Same for Monkey 2 (attention: p = 0.50; learning: p = 
0.07). (E) Fano factor decreased with both attention (p < 0.05) and learning (p < 10-3) for 
Monkey 1. (F) Same for Monkey 2 (attention: p < 0.05; learning: p < 10-3). (G) 
Correlated variability decreased with both attention (p < 0.05) and learning (p < 0.05) for 
Monkey 1. (H) Same for Monkey 2 (attention: p < 10-4; learning: p < 10-4). Number of 
sessions: Monkey 1: n = 150, Monkey 2: n = 78. 
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Fig. S5 

 

 

 
 
 
 

Fig. S5. The relationship between correlated variability and performance is weak in 
V1. For groups of V1 neurons in two additional animals that were previously well trained 
to perform the attention task used in the current study (18), correlated variability (rSC) 
was not correlated with performance (d’): Pearson correlation coefficient: cued: R = 0.04, 
p = 0.89; uncued: R = 0.53, p = 0.07. Data z-scored within monkey. While differences 
between the monkeys used in these two studies and small differences between the V1 and 
V4 tasks (e.g., the V1 task included stimuli of lower contrast, and the attended and 
unattended stimuli were not as far apart) make a quantitative comparison between the V1 
and V4 results difficult, our data suggest that the relationship between rSC and d’ is 
stronger in V4 than in V1. 
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Fig. S6 

 
Fig. S6. Optimal stimulus decoder analysis. Using simultaneously recorded units 
(which are almost certainly a small subset of the units the monkey uses to solve the task), 
the ability of an optimal, linear, leave-one-out cross-validated decoder to detect changes 
in the visual stimulus improved with perceptual learning and attention. Decoder 
performance (y-axis) was measured as a function of population size (x-axis), with 
maximum pool size based on classifier constraints on the pooled covariance matrix 
(Monkey 1: 30 units; Monkey 2: 10 units). We randomly selected subsets of units without 
replacement 1000 times for each population size. We determined the ability of the 
decoder to discriminate between neuronal responses to the stimulus prior to the 
orientation change and neuronal responses to the changed stimulus. To avoid artifacts in 
neuronal firing rates due to eye movements in response to the changed stimulus, we 
performed decoder analysis on the changed and previous stimuli based on neuronal 
responses during an abbreviated time window: spike count stimulus responses were 
measured between 60-130 ms after stimulus onset. We only included trials that presented 
the middle orientation change amount, for which we had cued and uncued orientation 
changes, and matched the distributions of middle orientation change amounts across all 
learning and attention conditions. (A) Optimal stimulus decoder performance improved 
throughout perceptual learning over a long time period (see fig. 1C for learning quartile 
illustration) for Monkey 1, (B) and Monkey 2, (C) as well as with attention within each 
day for Monkey 1, (D) and Monkey 2. Error bars are S.E.M. Number of days: Monkey 1: 
n = 37, Monkey 2: n = 10. 
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Fig. S7 

 

 
 
 
Fig. S7. Both attention and perceptual learning are associated with decreases in the 
proportion of the total variance explained by the first principal component (PC). 
Each plot follows format of fig. 1C. Attention and learning effects quantified as per fig. 
2. (A, C) Effects of attention (Monkey 1: p < 10-9; Monkey 2: p < 10-8) and learning 
(Monkey 1: p < 10-3; Monkey 2: p < 10-7) during the change-detection task. (B, D) These 
effects were not observed during passive fixation (Monkey 1: p = 0.12; Monkey 2: p = 
0.30). Number of sessions: detection task: Monkey 1: n = 150, Monkey 2: n = 78; passive 
fixation: Monkey 1: n = 35, Monkey 2: n = 22. 
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Fig. S8 
 
 
 

 

 
 
 
 
Fig. S8. The distribution of contributions of individual units to the first PC 
(correlated variability axis) is broad and not dominated by outlier units. Each 
histogram is the distribution of unit weights (the projection of each unit onto the 1st 
eigenvalue) for trials collected in the attention/learning condition in question. (A) 
Monkey 1 attention conditions: cued (top histogram) vs. uncued (bottom histogram). (B) 
Same for Monkey 2. (C) Monkey 1 perceptual learning conditions (sessions divided into 
first vs. second half of training): early learning (top histogram) vs. late learning (bottom 
histogram). (D) Same for Monkey 2. Additionally, the average firing rates of the units in 
the population were correlated with the projections of these firing rates onto the axis of 
the first PC, when analyzed across sessions per monkey (Monkey 1: Pearson correlation 
coefficient: R = 0.25; p < 10-6; Monkey 2: R = 0.37, p < 10-6). 
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Fig. S9 
 

 

 
 

 
Fig. S9. The effects of attention and perceptual learning on correlated variability 
and the proportion of variance explained by the first principal component remain 
after firing rate mean matching. The firing rates of individual units are known to affect 
measurements of noise correlations (2). To control for such effects, we analyzed subsets 
of unit pairs such that the distributions of firing rates were matched across both attention 
conditions and all sessions. (A, B) The mean firing rates of units that survived this 
distribution matching procedure are, by definition, the same across sessions and attention 
conditions. (C, D) Matching firing rates did not affect our noise correlation results. The 
average rSC decreased with both attention (Monkey 1: p < 10-9; Monkey 2: p <10-3) and 
learning (Monkey 1: p < 10-3; Monkey 2: p < 10-3). (E, F) Matching firing rates did not 
affect the attention- and learning-dependence of the amount of variability explained by 
the first PC. The proportion of variance explained by the first PC decreased with both 
attention (Monkey 1: p < 10-11; Monkey 2: p < 10-3) and learning (Monkey 1: p < 10-3; 
Monkey 2: p < 10-3). Additionally, we analyzed subsets of units such that the 
distributions of Fano factor were matched across both attention conditions and both 
learning conditions (early vs. late learning). The average rSC still decreased with both 
attention (Monkey 1: p < 10-5; Monkey 2: p < 10-5) and learning (Monkey 1: p < 10-3; 
Monkey 2: p < 10-3). The variability explained by the first PC still decreased with both 
attention (Monkey 1: p < 10-6; Monkey 2: p < 10-4) and learning (Monkey 1: p < 10-3; 
Monkey 2: p < 10-3). 
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Fig. S10 
 
 
 
 

 
 
 
 
 
Fig. S10. Attention- and perceptual learning-related decreases in rSC are not 
artifacts of changes in firing rate. Each plot is a heat map of rSC as a function of the 
mean firing rates of the two units in each pair, and each plot is symmetric across the 
diagonal. (A, B) As expected, there is a relationship between firing rates and rSC (2, 3). 
However, attention-related decreases in rSC (uncued vs. cued trials) are broad and are not 
artifacts of changes in firing rate. (C, D) Similarly, learning-related decreases in rSC 
(early vs. late trials) are broad and are not artifacts of changes in firing rate. 
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Fig. S11 
 
 

 

 
 
 
 

Fig. S11. Attention- and learning-related changes in correlated variability occurred 
across a broad range of timescales. The average shuffle corrected cross-correlogram 
(CCG) is plotted for each attention condition (A, B) or learning stage (C, D). The 
population average was smoothed with a 5 ms Gaussian kernel.  
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S12 

 

 

S12. Comparison of the first principal component to weighted population activity. 
To investigate the relationship between the monkeys’ choices and activity along the first 
PC in a complementary way to the choice decoder illustrated in fig. 4, A, E, and F, we 
compared projections of population responses to the stimuli before the orientation change 
onto the first PC with weighted sums of population activity using a method described by 
Haefner and colleagues (22) to infer the weights the monkeys used to make decisions. 
This plot illustrates the correlation between the projections onto the first PC and the 
weighted sums predicted by this decoding method for the data from one example day 
(Pearson correlation coefficient: R = 0.70, p < 10-35). These two measures were highly 
correlated for both monkeys (Monkey 1: median Pearson correlation coefficient across all 
days: R = 0.69; two-tailed Wilcoxon signed rank test of the Pearson correlation 
coefficient across all days: p < 10-8; Monkey 2: R = 0.48, p < 10-6). These complementary 
methods show that there is a strong relationship between correlated variability and 
behavior on individual trials.
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Fig. S13 

 

 

 
 
 
 
Fig. S13. The monkeys were not learning to attend during the recording period. In 
our study, the similarity in the neurophysiological effects of attention and perceptual 
learning is unlikely to be caused by the known interactions between attention and 
perceptual learning (8). Here we illustrate that perceptual learning was not accompanied 
by changes in the signatures of attention across sessions. Each detection task plot in fig. 2 
illustrates both the within-session changes with attention (difference between the black 
solid and black dashed lines) and the across-session changes with learning (the 
exponential change in the black solid line across the x-axis). Here, we plot the difference 
between the black solid and black dashed lines from fig. 2 to illustrate whether the 
strength of attention effects changed across sessions. Changes across sessions quantified 
as per fig. 2. (A) The difference in behavioral sensitivity between attention conditions did 
not change across sessions for Monkey 1 (p = 0.05). (B) Same for Monkey 2 (p = 0.55). 
(C) The difference in evoked response between attention conditions, quantified with an 
attentional modulation index (MI) as previously described (5), did not change across 
sessions for Monkey 1 (p = 0.38). (D) Same for Monkey 2 (p = 0.27). (E) The difference 
in Fano factor between attention conditions did not change across sessions for Monkey 1 
(p = 0.50). (F) Same for Monkey 2 (p = 0.66). (G) The difference in correlated variability 
(rSC) between the attention conditions did not change across sessions for Monkey 1 (p = 
0.73). (H) Same for Monkey 2 (p = 0.30). Number of sessions: Monkey 1: n = 150, 
Monkey 2: n = 78. 
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