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Abstract

Background

Chronic stress is generally known to exacerbate the development o&raugn
neuropsychiatric diseases such as fear and anxiety disorders,isvaideast partially due to
the disinhibition of amygdala subsequent to the prolonged stress exgaa@&.receptor A
(GABAAR) mediates the primary component of inhibition in brain and itsaein produce
two forms of inhibition: the phasic and tonic inhibition. While both of thex@ critically]
engaged in limiting the activity of amygdala, their roles in #mygdala disinhibition
subsequent to chronic stress exposure are largely unknown.

Ul

Results

We investigated the possible alterations of phasic and tonic GREBArrents and their rol¢s
in the amygdala disinhibition subsequent to chronic stress. We found timatchrainic
immobilization and unpredictable stress led to long lasting lotmnaf GABAAR currents ir
the projection neurons of lateral amygdala. By contrast, the p@&SBAAR currents, as
measured by the spontaneous inhibitory postsynaptic currents, wedlyiunaltered. The
loss of tonic inhibition varied with the duration of daily stress draltotal days of stres
exposure. It was prevented by pretreatment with metyrapone to bloclostatane synthesjs
or RU 38486, a glucocorticoid receptor antagonist, suggesting thealcimvolvement of
glucocorticoid receptor activation. Moreover, chronic treatmenth wibrticosterone
mimicked the effect of chronic stress and reduced the tonic imdmhiti lateral amygdala o¢f
control mice. The loss of tonic inhibition resulted in the impaired Gé&gic gating or
neuronal excitability in amygdala, which was prevented by metyraponeginera.

Conclusions

Our study suggests that enduring loss of tonic but not phasic @RBArrents critically
contributes to the prolonged amygdala disinhibition subsequent to chrass. $&e propoge
that the preferential loss of tonic inhibition may account for tiveldpment of stress-relatg
neuropsychiatric diseases.
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Background

Repeated exposure to stress has enduring detrimental influendee dirain and body
function [1]. It enhances the sufferers’ reactivity to the emrrentally threatening or
emotionally challenging events and at the extreme, leads tdetledopment of a series of
mental disorders including anxiety disorders and depression [2,3]. dedaygan almond-

shape brain nucleus complex located deep within the temporal lobéicallg engaged in

the acquisition, retrieval and expression of aversive memories Mekinting evidence has
demonstrated that amygdala is one of the primary targets of chstneiss [7,8]. Under



resting conditions, the amygdala is inhibited by the extensive GAgB&aetwork and
exhibits low neuronal firing [9]. By contrast, the amygdala is dibitdd and shows
heightened activation upon chronic stress [10,11], resulting in the secresensitivity of
amygdala to the environmental cues and individual’s hypervigilamieh persist even after
long period of recovery.

Studies on the neuronal and molecular underpinnings of chronic stress-indoggdakn
hyperresponsiveness have revealed the involvement of multiple faatdrsas the structural
remodeling of amygdala neurons inducing the dendritic arborization ane ppertrophy
[12,13] and the decreased expression of calcium-activated potassiumlqaghen the
cytoplasmic membrane [14]. The enlarged pools of spines faciitaigdala neurons to
receive and integrate the incoming signals from thalamocoge&r@ory domains and from
the higher order cortical areas such as prefrontal cortexietluetion of kg, activity, on the
other hand, enhances the neuronal intrinsic excitability, therebyrilmdmtg to the
overexcitation of amygdala as a consequence of chronic stress.

Besides these, chronic stress exposure was also reported toimethdt attenuation of
GABAergic signaling, shifting the amygdala to a more ekb#tsstate [9,15,16]. GABARS
mediate the majority of the inhibitory tone in central nervous systad their activation
produces two forms of inhibition, the phasic and tonic inhibition [17,18]. Toexist in
numerous brain areas and are thought to be mediated by intra-teasyesptic GABARS
respectively [19]. In amygdala, both forms of inhibition are engagedonstraining the
neuronal activity [20,21]. However, their specific roles in amygdaehibition subsequent
to chronic stress are largely unknown.

In this study, we investigated the possible effects of chromenabilization and
unpredictable stress on the phasic versus tonic G&Béurrents in mice LA with effort to
examine their roles in subsequent amygdala disinhibition. Since the advecse @ffghronic
stress always persist even upon the cessation of stress eXd&$uvee conducted the study
in mice experiencing 10 or 30 days of stress-free recovery @hronic immobilization or
unpredictable stress exposure to explore the possible enduringtiaiterof GABAR
signaling. We found that chronic stress exposure led to long ldstsgof tonic but not
phasic GABAR currents through corticosterone (CORT) production with subsequent
activation of glucocorticoid receptor (GR). The loss of tonic iniwibit contributed
substantially to the disinhibition of neuronal activity in LA followingolonged stress
exposure.

Results

Chronic stress causes long lasting loss of tonic taaot phasic GABAAR
currents in LA PNs

Tonic GABAergic inhibition is generally known to result from the mipg of peri- or
extrasynaptic GABAR upon binding the ambient GABA diffused outside of synapses. To
investigate whether chronic stress had long lasting influence omphasic versus tonic
GABAAR currents in LA PNs, we recorded both currents from control amceCIS mice
having 10 days of recovery from stress (Figure 1). We foundtaabhic GABAR currents
was conspicuously decreased in CIS mice relative to those irokonte (p = 0.007, Figure
1A-B). By contrast, the phasic GABR currents, as measured by sIPSCs in PNs, did not



differ between the two groups (Figure 1C-G). The parameterstigpilce sIPSCs, including
their amplitude (p = 0.884), frequency (p = 0.560) and dynamic propetie¥00s rise time,
p = 0.698; decay constant, p = 0.458) were all similar between grouplginignthat CIS
exposure preferentially suppressed the tonic but not phasic RBArrents in LA. To test
whether the loss of tonic inhibition was a common response evidentgoswre to different
types of stressors, we next measured the two forms of cuirel@&/S mice. The tonic
currents in these mice were also weaker than those in contel (F(2, 32) = 7.675, p =
0.002, Figure 1A-B) but similar to those in CIS mice (p = 0.388). BIBiBCs did not differ
from those in control and CIS mice (amplitude: F(2, 44) = 0.352, p = Off&gfiency: F(2,
44) = 0.048, p = 0.953; 10-90% rise time: F(2, 44) = 0.712, p = 0.496; decay coR&ant:
44) =1.894, p = 0.162; n = 17, Figure 1C-G). Thus, the loss of tonic GREArrents might
represent a common feature of the deficits in GABAergic $igganduced by prolonged
exposure to diverse stressors. Since the tonic GABeéurrents in brain are activated by the
ambient GABA outside of the inhibitory synapses and its contemirgelly limited by the
activity of GABA transporter, the loss of tonic inhibition subsequenCtd may reflect
decreased GABA diffusion resulting from an enhanced GABA transpdrtetest this, we
employed a GABAR-containing outside-out patch as a sensor of ambient GABA and
compared the efficacy of GABA transport in control and CIS mycebnitoring the changes
of tetanus-evoked GABAR currents in response to 101 SKF 89976A, a GABA uptake
inhibitor. We found that the SKF 89976A readily enhanced the amplitude arge dheamsfer
of GABAAR current in both groups of mice and the enhancement was only slightly
insignificantly stronger in CIS mice than those in control nfentrol: n = 8; CIS: n = 8;
amplitude, p = 0.302; charge transfer, p = 0.171, Figure 2). Thus, it agpleare¢he GABA
transport did not display considerable changes upon 10 days’ removal f®mn@lthe
enduring loss of tonic inhibition in CIS mice was mainly not due to |lred GABA
diffusion.

Figure 1 Both Chronic immobilization and unpredictable stress cause long lastqloss

of tonic but not phasic inhibition in lateral amygdala. A,Representative traces showing
the tonic GABAR currents in the projection neurons (PNs) of lateral amygdala (LA) from
control mice (upper) and mice experiencing 10 days of recovery from chronabifrration
(CIS, middle) or unpredictable stress (CUS, bottom). The tonic currents wesarsttas the
amplitude difference between the dashed lines indicating the averaggghmidient before
and after BIC applicatiorB, Summary of the tonic GABAR currents in control, CIS and
CUS miceC, Representative traces showing the spontaneous inhibitory postsynapticscurrent
(sIPSCs) in LA PNs from control (upper), CIS (middle) and CUS (bottom) i€,
Summary of the sIPSCs amplitude (D), frequency (E), 10-90% rise time (F) aanyd dec
constant (G) in LA PNs from control, CIS and CUS mice. ** p < 0.01 (unpaiest)

Figure 2 The ambient GABA is similar in LA from control and CIS mice. A,

Representative traces showing GABAcurrents in an outside-out patch evoked by a short-
lasting tetanus applied to the LA of control (left) and CIS mice (righeSkvere
consecutively perfused with ACSF (top), SKF 89976A (middle) and BIC (bottom). Néte tha
SKF 89976A enhanced the GARR currents in both mice. The stimulus artifacts were
truncated for clarityB-C, Comparisons of the increased amplitude (B) and charge transfer
(C) of GABAAR currents by SKF 89976A in control and CIS mice.

To investigate whether such loss of tonic GABAcurrents could last for a longer period, we
continued to examine the currents in CIS mice experiencing 30ofi@psess-free recovery.
Compared with those in the control mice of similar age (68-75djothe GABAAR currents



in CIS mice were also weaker (control: n = 7; CIS: n = 7; @G443, Figure 3). Thus, the
above results demonstrated that chronic stress produced enduring tossc GGABAAR
currents in the LA PNs.

Figure 3 The loss of tonic inhibition persists after 30 days of recovery from chronic
immobilization stress (CIS). A,Example traces showing the tonic GARRA currents in LA
PNs from control mice (upper) and mice having 30 days of recovery from CIS (ldBom
Summary of the tonic GABAR currents in (A). * p < 0.05.

The adversity of stress exposure is generally known to depensl sgverity and duration of
exposure. Having observed that 1 hour of daily immobilization for 10 congec#ys was
sufficient to evoke loss of tonic GABR currents in LA, we asked whether the alteration of
the tonic inhibition was related to the duration of daily immobilaraaind the total days of
stress exposure. To this end, we first varied the duration gfidaihobilization from 1 hour
to 15 minutes or 2 hours. After 10 days recovery from CIS, the tonBAGR currents in
those subjected to 2 hours daily immobilization were also draaigtatecreased (n = 6, F(3,
38) = 7.895, p < 0.001, Figure 4A-B), but to a level similar to thah se the 1 hour
immobilization group (p = 0.632). By contrast, the CIS mice having dainobilization for
15 minutes did not show noticeable changes in their tonic currents (n EA, p = 0.692ss
control, Figure 4A-B).

Figure 4 The alteration of tonic GABAAR currents by chronic immobilization stress

(CIS) varies with the daily immobilization duration and the total days of imnobilization
exposure. A,Representative traces showing the tonic GARAurrents in CIS mice
subjected to 15 minutes (upper) or 2 hours (bottom) of daily immobiliz&iddomparisons
of the tonic GABA\R currents between control mice and CIS mice subjected to daily
immobilization with different duration€, Procedures used to treat the mice with different
days of immobilization stress (1S) followed by 10 consecutive days of $teesgecovery.

The tonic GABA\R currents in the LA PNs were recorded upon the cessation of recDyery.
Representative traces showing the tonic GABAurrents in different groups of IS mice.
Comparison of the tonic GABAR currents between control mice and different groups of IS
mice. *p < 0.05; **p < 0.01.

We next investigated whether the effect of stress on tonic fitmlalso varied with the total
days of immobilization exposure. For this, we randomly assignedntbe into different
groups which were given 1 hour daily immobilization for 2, 4, 6 or 8 cutse days
respectively. 10 days after the cessation of stress exposutenih&ABALR currents were
measured in LA (Figure 4C). As depicted in Figure 4D-E, the t@ABAAR currents
declined progressively with the increase of exposure days and gnANVA revealed a
significant effect of exposure days on the tonic inhibition (F(4, 4B.459, p = 0.017).
Whereas 2 or 4 days of immobilization failed to have significiatieon the tonic GABAR
currents (IS-2d: n = 7, p = 0.808 control; 1IS-4d: n =7, p = 0.25& control) in LA PNs, 6
or 8 consecutive days of immobilization markedly decreased the @u(i8n6d: n = 8, p =
0.035vs control; 1S-8d: n = 9, p = 0.02& control). Collectively, the above results strongly
suggested that CIS-evoked loss of tonic inhibition in LA was primarily comtirageboth the
duration of daily immobilization and the total days of exposure.



CORT is required for CIS-induced loss of tonic GABA\R currents in LA

Chronic stress exposure results in the overactivation of HPAvaisa surge of CORT
production, which accounts for many of its deleterious effects orbrthie and behavior.
CORT was also shown to be capable of modulating the expressionmatidritof GABAWR

[22], promoting us to speculate that excessive CORT secretiorsponge to CIS might
mediate the decline of tonic GABR currents in amygdala. To test this, we pretreated the
CIS mice with metyrapone (80 mg/kg) to block CORT synthgBiminutes prior to the daily
immobilization (Figure 5A). Its potential effects on the @tketonic inhibition following CIS
were then examined. We found that metyrapone administration thorougbtged the loss

of tonic GABAWR currents (metyrapone: n = 10, F(2, 29) = 9.040, p < 0.001, Figure 5B-C)
while vehicle administration had little effect (vehicle: n = 7% 0.084vs CIS), suggesting
that CORT was necessary for the loss of tonic GABAurrent.

Figure 5 The loss of tonic GABAR currents in response to chronic immobilization
stress (CIS) is mediated by corticosterone (CORT) production witsubsequent
activation of glucocorticoid receptor. A,Experimental procedures used to treat CIS mice
with different drugs to examine the role of CORT signaling in the altered @RBAAR
currents by CISB, Example traces showing the tonic GARRA currents in LA from CIS
mice receiving vehicle pretreatment or pretreated with metyrapon88R&86 and
spironolactone respectivel§, Summary of the tonic GABAR currents in (B)D,
Comparisons of the plasma CORT levels in control mice and mice having 1 or 10 days
recovery from CISE, Example traces showing the tonic GAFA currents in control mice
and mice fed with different levels of CORH,. Summary of the tonic GABAR currents in
(d).*p < 0.05; **p < 0.01.

Given the critical involvement of CORT, we next asked whether theated CORT
secretion subsequent to CIS could be maintained for a long periodtaées removal. We
measured the plasma CORT levels in control mice and those exegiel or 10 days
recovery from CIS. The results demonstrated that the CORTslaveédoth groups of CIS
mice were far higher than that in control mice (n = 6 for eaohip, F(2, 15) = 7.201, p =
0.006, Figure 5D), indicating that the elevated CORT in plasma castifior at least 10 days
after the cessation of CIS exposure. To explore whether CORF was sufficient to
suppress the tonic GABR currents in LA, we fed the mice at age of 28-35 days with
CORT for 10 consecutive days and the possible changes of tonic GAB&Arents were
detected10 days after the cessation of CORT feeding. Asrs&egure 5E-F, although M
CORT in drinking water failed to affect the tonic GABR currents (uM: n =9, p = 0.882

vs control), 5uM CORT did lead to robust decline of the currents in LAKS n = 7, F(2,

27) = 3,978, p = 0.031). Consistent with the lack of the influence of CIS ®IRBESs, both
levels of CORT did not affect the amplitude, frequency and dynanoigerties of sIPSCs
(amplitude: F(2, 36) = 0.512, p = 0.603; frequency: F(2, 36) = 1.025, p = 0.407; 10-90% rise
time: F(2, 36) = 0.415, p = 0.663; decay constant: F(2, 36) = 2.010, p = 0.148, Gjigure
Altogether, these results highlighted a prominent role for COR@yation in CIS-evoked
loss of tonic inhibition in LA.

Figure 6 Feeding with CORT does not affect the sIPSCs in LA PNs. Representative
traces showing the sIPSCs in LA PNs from control mice (upper) and micatfet yiv
(middle) and 5uM CORT (bottom) for 10 consecutive dasE, Summary plots of the
sIPSCs amplitude (B), frequency (C), 10-90% rise time (D) and decay cofistam(A).




CIS weakens tonic GABAR currents through activation of glucocorticoid
receptors

In brain, CORT functions through binding to GR and mineralocorticoid rec@dR) in the
target areas. To identify their roles in CIS-induced loss of t@AMBAARS currents, we
pretreated the CIS mice 30 minutes prior to the daily immohizatith either RU 38486
(20 mg/kg/day), a GR antagonist or spironolactone (100 mg/kg/day), a MR astd§agure
5A). While spironolactone pretreatment had no effect, pretreatméht RU 38486
effectively prevented the decline of tonic GARBR currents subsequent to CIS
(spironolactone: n = 7; RU 38486: n = 8, F(2, 19) = 10.538, p < 0.001, Figure JBu().
these results implied a pivotal role of GR but not MR in theugison of tonic inhibition
mediated by CORT.

Loss of tonic GABALR current impairs GABAergic control over neuronal
excitability in LA

The neuronal excitability in amygdala is normally under extensitéitory control of
GABA but undergoes substantial enhancement upon CIS. Given loss ointaibition as a
consequence of CIS, we speculated that such loss might impair the@BiABA to inhibit
the neuronal excitability in LA, thereby contributing to the @ased responsiveness of
amygdala. To test this scenario, we delivered depolarizing cuptdses to the clamped
neurons to evoke neuronal firing and compared the possible influence BA GA the
properties as well as the number of action potential in control #dn@e (Figure 7A-D).
The properties of action potential, including its threshold (p = 0.116)litante (p = 0.458)
and half width (p = 0.590), did not differ between control and CIS miceuaallered by
subsequent application of GABA (Table 1). However, GABA perfusion echusarked
reduction in the spike number in both groups, which was completely eelvieyssubsequent
application of 1QuM BIC (the main effect of treatment, control: F(2, 113) = 46.05, p < 0.001,
n=38; CIS, F(2, 113) = 9.94, n = 8, p < 0.001, Figure 7A-D). Such reduction, howeser,
much weaker in CIS mice relative to that in control mice (taeraffect of group, F(1, 74) =
45.30, p < 0.001). Thus, the loss of tonic inhibition in response to CIS was tench by
an impaired GABAergic suppression of neuronal firings in LA.

Figure 7 Chronic stress leads to substantial impairment of GABAergic inhiliion onto
neuronal excitability in lateral amygdala (LA). A, B, The GABAergic modulation of
neuronal excitability in LA from control mice. (A) shows the firing pattefra single LA
neuron in response to a depolarizing current pulse of 100 pA when the slices are perfused
with ACSF (upper), GABA (middle) and BIC (bottom) successively. (B) shbe/siumber
of action potential increases steadily with the increase of pulse amplitaitieaiplication of
GABA causes a substantial decrease of the action potential number atempgse
amplitude, which is completely reversed by subsequent BIC applic@ti@n.The
GABAergic modulation of neuronal excitability in LA from CIS mice. Thdity of GABA
to suppress the neuronal firing in CIS mice is much weaker relative to that in corol
The other illustrations are the same as in (AB)EF, The GABAergic modulation of
neuronal excitability in LA from metyrapone-pretreated CIS mice. Metyme pretreatment
improves the impaired GABAergic control over neuronal excitability in LA fol8 mice.
The other illustrations are the same as in (A-B). *p < 0.05; **p < 0.01; ***p < 0.001.




Table 1Effect of GABA on the properties of action potential in lateral amygdala from
different groups of mice

AP parameters Control (n = 8) CIS(n=8) CIS + metyrapone (n =7)
ACSF GABA P ASCF GABA P ASCF GABA P

AP threshold (mV) -36.29+1.2838.43+0.740.367 -40.74+2.09 -40.50+2.14 0.801 —-38.97+1.21 —38.28+1.14 0.635
AP amplitude (mV) 80.25+2.41 81.45+2.50.597 78.83+2.05 79.57+1.51 0.59582.73+1.45 80.60+2.98 0.386
Half AP width (ms)  2.09+0.12  2.10+0.09 0.9002.12+0.14 2.14+0.11 0.817 2.01+0.15 2.04+0.10 0.548

AP: action potential. ACSF: artificial cerebrospinal fluid. The bemin parenthesis
represents the number of neurons. p values were obtained from comparfsonsbe after
GABA application using pairetitest.

Since our above findings have demonstrated that corticosteroid modulsi®ma kernel
process for CIS-evoked reduction of tonic GABRAcurrents, we hypothesized that blocking
CORT synthesis might be effective in preventing the disruption dBA®Agic control over
neuronal excitability in CIS mice. We pretreated the CISemidth metyrapone and
examined its potential role in reversing the altered GABAepntrol over neuronal
excitability. The basal properties of action potential in meiyna-treated CIS mice did not
differ from those in control or CIS mice (threshold, F(2, 21) = 2.21,00099; amplitude,
F(2, 21) = 1.86, p = 0.158; half width, F(2, 21) = 0.871, p = 0.482, Tab.1). However, GABA
caused a far greater decrease of the number of action poternkiake mice relative to that in
CIS mice (the main effect of group, F(1, 69) = 7.098, p = 0.009, Figure 7@vegrling
substantial improvement in GABAergic dysfunction by metyraponeqathent. Together
with its ability to rescue the loss of tonic GABR currents following CIS, theses results
suggested that CORT production was critically engaged in the renobviahibition in
amygdala subsequent to chronic stress.

Discussion

Here, we find that chronic exposure to either immobilization or ungeddestress results in
enduring loss of tonic GABAR current in LA while leaving the phasic GARRs
unaffected. Such loss is primarily due to the production of CORIT subsequent activation
of GR and leads to an impaired GABAergic control over the neureraitability in
amygdala. Given the essential role of amygdala GABAN maintaining the appropriate
expression of emotion such as fear and anxiety [9], we proposehthatetective tonic
inhibition may represent one of the key mechanisms through which prolongecesgdssts
persistent and detrimental action on brain’s processing of the emotionadhyt galents.

The GABALRs mediating the tonic and phasic inhibition in CNS differ comaldg in terms
of their subunit composition, subcellular localization, kinetic and pharmgical properties
[23]. Despite these, they both are exquisitely sensitive to thegels in their environment.
For instance, the elevated level of steroid hormone progesterone cwgiraydrian cycle
alters the expression of baitandy2 subunits of GABARS, which are the kernel subunits of
GABARSs responsible for tonic and phasic inhibition respectively in mang braas [24].
Accumulating evidence has shown that stress exposure exddsaatiions on GABARS,
ranging from changing their orthosteric and allosteric binditeg $25,26] to modulating the
MRNA and protein expression of GARR subunits [26-28]. In amygdala, chronic stress has
been reported to regulate the expression of several GRB#ubunits [29,30]. Yet, it is
unknown whether these effects result in the changes of tonic and phiasiition in
amgydala. Here, we reveal that both CIS and CUS produce endurifigedet tonic



GABAAR currents while having negligible effects on their phasic copatts. The loss of
tonic inhibition persists even 30 days after the cessation ofsstrgsosure, implying a
striking temporal persistence of the altered tonic inhibitiontbgprdc stress. These findings,
however, do not reconcile with recent studies showing that acutebilwation stress
impairs the evoked inhibitory currents in amygdala [16,31]. One pogsiplanation for this
discrepancy is that the impaired phasic inhibition following immpdiion stress is reversed
after long term stress-free recovery, making it undetectaftdg 10 or 30 days of stress
removal.

As generally known, the adversity of chronic stress is highly eatelwith the severity of
stressor and the duration of exposure. We find it is also the oasde altered tonic
inhibition in LA. It varies dramatically with the duration of dailgmobilization and the total
days of immobilization stress. When the daily immobilization duratas set for 1 hour,
short-term exposure (2 or 4 days) failed to affect the tonic intmb#nd increasing the days
of exposure (6 or 8 days) caused the reduction. On the other hand, wiramthalization
exposure was set for a total of 10 days, 15 minutes of daitolrlization failed to have
significant influence on the tonic inhibition, which could be readily sesged by extending
daily exposure to 1 or 2 hours. Somewhat surprisingly, the phasic @RBArrents do not
experience remarkable changes, suggesting a type-spefgfit &f chronic stress. The exact
cellular mechanisms for this are not yet known. However, accamylatudies have
documented that stress regulates the expression and function of \RABAa subunit- and
area-specific manner. For example, chronic stress expostneades the expression[iif/2
subunits but has no effect @i/2 subunits in periventricular nucleus [28]. By contrast, it
increases the expressionfpsubunits in the hippocampus [32]. In view of the heterogeneity
of the modulation of GABAR by chronic stress and the marked differences between tonic
and phasic inhibition, the selective reduction of tonic GABAcurrents may thus raise a
possibility that chronic stress preferentially regulate the esgion and/or function of the
GABAAR subunits associated with tonic inhibition. It is worth noting that ed®CIS and
CUS have been shown to exert distinct effects on the structmaddeling in the limbic
systems [12], we find that they both impair the tonic inhibitionnnygdala. We propose that
it may serve as a common mechanism for the aberrant actiwdtaonygdala in response to
both paradigms of chronic stress [14,33,34].

We next observe that CORT mediates the impaired tonic inhibitidcAisubsequent to
chronic stress. Blocking CORT production with metyrapone during €éStieely prevents
the decline of tonic inhibition. In addition, chronic administration of CQORimics the
effects of chronic stress and results in a substantial drop af ®WBAAR currents in LA.
CORT administration has been shown to have a wide range otsetiacGABAR. It
regulates the expression and function of GABA[26,34] and alters the driving force of
GABAR-mediated chloride currents [35]. Although the exact cellulatha@sms for these
CORT actions remain undetermined, the altered GABAunctionality by CORT may
contribute to the loss of tonic inhibition and amygdala disinhibition subsetpuenblonged
stress exposure. Such a speculation seems not to reconcildevitimaltered sensitivity of
synaptic GABARs to GABA by CORT, as shown in the current study. However,
considering that synaptic versus extrasynaptic GAIBAliffers a lot from each other in their
subunit composition and dynamic modulation [36], CORT may regulatexipression and
function of extrasynaptic versus synaptic GABAIn different manners. Actually, these two
types of GABARs exhibit contrasting alterations under some pathological conditions. F
example, the expression of synaptic GA#BAwas increased in temporal lobe epilepsy while
that of thed subunit of GABAR, a subunit located exclusively in extrasynaptic space, was



decreased [37,38]. A substantial number of studies have also demaongtedtexcessive
CORT secretion accounts for the neuronal restructuring and thedalggutamatergic
transmission in hippocampus, amygdala and prefrontal cortex [39-42}hahe thought to
be the primary mechanisms for the involvement of CORT in emdtiand cognitive

dysfunction by chronic stress [43-45]. Given the long lasting loswmt inhibition in

response to chronic stress or CORT administration, we speculateyit provide an
alternative mechanism through which CORT mediates the patsitéeterious effects of
chronic stress.

In the brain, CORT functions primarily through GR and MR. Whilehbgceptors are
colocalized in amygdala [46], we observe that it is GR ratii@n MR that mediates the
disruption of tonic inhibition subsequent to chronic stress. This is likdhe associated with
their distinct pharmacological properties [47]. The CORT affioityVR is ten times higher
than that of GR [48]. The high CORT affinity makes MR to be hgawicupied by basal
level of CORT. By contrast, GR is heavily occupied only when trmilating CORT is
elevated under conditions such as stress exposure, which renders [3Bridealiating the
biological function of stress. Consistent with the pivotal role ofiGEhe diminished tonic
inhibition, a wealth of data has also documented the involvement of @& olysregulation
of HPA axis and memory deficits following chronic stress [49&@] antagonism of GR
signaling has been proposed as a therapeutic target in steted-rpsychiatric diseases
[51,52].

Lastly, we find that along with the long lasting loss of toniaibition, the ability of GABA

to suppress neuronal firing is greatly impaired subsequent to clstoess. Since the phasic
GABAAR currents do not experience considerable changes, this GABABgfienction is
most likely due to the loss of tonic inhibition. It has been showrthleatharge carried by the
activation of tonically active GABARs is three to five times larger than that carried by
phasic inhibition [17,19]. Thus, it is not surprising that the deficitamfic inhibition is
sufficient to lead to the disruption of GABAergic control over neuronal eviitta Recently,

a few studies have implicated the defective tonic inhibitory tomeamygdala in the
pathogenesis of some neuropsychiatric disorders [53,54]. Further studieseeded to
uncover its functional role in the adverse effects of chronic stress on the brain and behavior

Conclusions

We have shown in this study that chronic stress exposure &iggduring loss of tonic but

not phasic GABAR currents in amygdala which is dependent on stress-evoked CORT
production with subsequent GR activation. We conclude that the loss ofinditdion
contributes to amygdala disinhibition following chronic stress and ttmas account for the
development of neuropsychiatric disorders.

Methods

Animals

Male C57BL/6 J mice were subjected to chronic stress exposage aif 28—-35 days except
for those stated in Figure 3C. All animals were housed in grou@s-®fwith ad libitum
access to food and water unless specified in stressed mice anidimea in a temperature
and humidity controlled room with a light/dark cycle of 12 hours. Alpezimental



procedures followed the guidelines of National Institutes of Haalthwere approved by the
ethics committee of Nanchang University.

Models of chronic stress

Chronic immobilization stress (CIS) and chronic unpredictabless{@dS) were employed
in the present experiment. Mice assigned to CIS were placeckstraint cylinder at around
2 pm for 1 hour per session, one session per day and for 10 consecutjventizss stated
otherwise. For the CUS paradigm, the mice were given 2 stsgsspday for 10 consecutive
days. The stressors applied were randomly selected from Boséres&l thus unpredictable
for the mice. The 8 stressors included forced swim for 4 minglightovernight, lights off
for 3 hr during the light period of the light/dark cycle, cold room expo$temperature was
set at 10°C) for 1 h, food and water deprivation overnight, gentle dedeng for 1 h,
immobilization for 1 h and wet bedding overnight. The control mice Wwareferred in their
home cages to the experimental room, gently handled for 2—4 minutestamd back to
the feeding room about 1 hour later.

Corticosterone assay

Animals were anesthetized with ether at around 1-2 pm and the wkmdollected through
cardiac puncture into heparinized tubes. Samples were centrifuggdoat rom for 20
minutes at 4°C. Sera were collected and stored at —80°C untiledsgalgsma CORT was
measured by specific radioimmunoassay with ELISA kit (Abcam).aVoid the potential
inter-assay variation, all samples were measured in the assag. The standard curve (1—
100 ng/mL) and samples were run in triplicate.

Drugs

CORT was freshly prepared in the drinking water and delivered iuepaottles to protect it
from light. The stock solution of RU 38486, spironolactone and metyrapereemade using
EtOH (<0.1% at final concentration) and administered intragezdlly 30 minutes prior to
the daily immobilization. CORT was purchased from Sigma-Alldand the others were
from Tocris Bioscience.

Electrophysiology

Amygdala slices were prepared as previously described [5Efl\Bnnice were sacrificed by
decapitation and brains were quickly removed to ice-cold oxygenated (9% @Q)
artificial cerebrospinal fluid (ACSF) containing (in mM): 124G, 2.5 KCI, 1 MgSQ@ 2.5
CaClb, 10 glucose, and 26 NaHG@H = 7.30). Slices containing lateral amygdala (LA) of
about 350um were cut with a Leica VT 1000S tissue slicer and maintaatetbom-
temperature for at least one hour before recording. Slices twatsferred to a recording
chamber continuously superfused with ACSF at a constant rate of@ébamlth. The whole-
cell patch clamp was made in the projection neurons (PNs) of ltA an Axon 700B
amplifier. The patch pipettes for recording GABAergic cusentre filled with (in mM):
100 CsCl, 30 Cs-methanesulfonate, 5 NaCl, 2 Mgt HEPES, and 0.2 EGTA, 2 ATP-Na,
0.1 GTP-Na. The pH was adjusted to 7.3 with CsOH and osmolarity to 2&nmuvith
sucrose. In experiments where action potentials were evoked, CsCkandthanesulfonate
were replaced by equal concentrations of Kgluconate. To recorgpasic and tonic



GABAAR currents, 2QuM APV, 20 uM DNQX and 5uM CGP 52432 were routinely added
into the bath solution to block the ionotropic glutamate receptors andp® GABA
receptors. In experiments where tonic GABAcurrents were recorded, 2M GABA was
included in the ACSF to ensure the activation of extrasynaptic GRBAThe spontaneous
inhibitory postsynaptic currents (sIPSCs) were collected 2—-3 asnptior to GABA
application. To evoke action potentials in the PNs, cells werededat current clamp mode
and the depolarizing current pulses of increasing amplitude wdikeerdd. To measure
GABA diffusion in amygdala slice from control and CIS mice, wgqyened an outside-out
patch containing GABAR and inserted this patch into slice [55]. The GABRAcurrents in
response to the diffused GABA following a short-lasting tetanusedet to LA (4 stimuli,
100 Hz) were recorded and the effects of GABA uptake inhibitor wesaitored. The
pipette resistance was 3—7(M The membrane potential was held at =70 mV and the
junction potential of about 12 mV were uncorrected. Series resss(&%) was in the range
of 10-20 M2 and monitored throughout the experiments. If Rs changed more than 20%
during recording, the data were not included in analysis.

Data analysis and statistics

Data were low-pass filtered (3KHz) and digitized at 10 KHmi&® GABAAR currents were
defined as the currents blocked by bicuculline (BIC) and meassredegiously described
[56]. The amplitude, frequency and dynamic parameters of sIP®@s analyzed offline
using MiniAnalysis §ynaptosoft, Inc). The spike threshold was identified at the point where
the action potential was initiated and showed a >10 fold change insthg rate. The
amplitude of AP was measured as the voltage difference betivee¢hreshold and the peak
of the action potential. The half AP width was measured at hejfihbetween the threshold
and the peak of the action potential. All data were expresseMeams+tSEM. The
comparisons of the intensity of tonic inhibitory currents and thanpaters depicting sIPSCs
or action potential were obtained by using ANOVAs followedpbst hoc t test. Statistical
significances were considered at p < 0.05.

Abbreviations

LA, Lateral amygdala; PN, Projection neuron; GAER GABAA receptor; CIS, Chronic
immobilization stress; CUS, Chronic unpredictable stress; sIPSC, Spontamgbiiery
postsynaptic currents; CORT, Corticosterone; GR, Glucocorticoid receptor; MR
Mineralocorticoid receptor
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