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a b s t r a c t

Brain-inspired machine learning is gaining increasing consideration, particularly in computer vision.
Several studies investigated the inclusion of top-down feedback connections in convolutional net-
works; however, it remains unclear how and when these connections are functionally helpful. Here we
address this question in the context of object recognition under noisy conditions. We consider deep
convolutional networks (CNNs) as models of feed-forward visual processing and implement Predictive
Coding (PC) dynamics through feedback connections (predictive feedback) trained for reconstruction
or classification of clean images. First, we show that the accuracy of the network implementing PC
dynamics is significantly larger compared to its equivalent forward network. Importantly, to directly
assess the computational role of predictive feedback in various experimental situations, we optimize
and interpret the hyper-parameters controlling the network’s recurrent dynamics. That is, we let the
optimization process determine whether top-down connections and predictive coding dynamics are
functionally beneficial. Across different model depths and architectures (3-layer CNN, ResNet18, and
EfficientNetB0) and against various types of noise (CIFAR100-C), we find that the network increasingly
relies on top-down predictions as the noise level increases; in deeper networks, this effect is most
prominent at lower layers. All in all, our results provide novel insights relevant to Neuroscience
by confirming the computational role of feedback connections in sensory systems, and to Machine
Learning by revealing how these can improve the robustness of current vision models.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Feed-forward deep convolutional networks (DCNs) reached
emarkable accuracy in several visual tasks, including image
lassification. Inspired by biological visual systems (Fukushima,
980), they share several similarities with them. For example,
oth systems have a hierarchical structure, in which neurons in
he higher (lower) levels of the hierarchy have larger (smaller)
eceptive field sizes and respond to more complex (simpler) stim-
li (Hubel & Wiesel, 1959). Further, representational (Khaligh-
azavi & Kriegeskorte, 2014) and functional similarities (Bashivan,
ar, & DiCarlo, 2019) between the feed-forward DCNs and the
rain’s feed-forward visual pathway have provided novel oppor-
unities to study the brain through the lens of DCNs.

However, contrary to biological visual systems, DCNs blunder
ignificantly when confronted with noisy images and adversarial
ttacks, revealing an important deficit in robustness (Hendrycks &
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893-6080/© 2022 Elsevier Ltd. All rights reserved.
Dietterich, 2019; Nguyen, Yosinski, & Clune, 2014; Szegedy et al.,
2013). One main difference with their biological counterpart con-
sists in the lack of recurrent or feedback connections. It has been
shown that the brain relies on feedback pathways for robust
object recognition under challenging conditions (Choksi et al.,
2021; Kar & DiCarlo, 2021; Kar, Kubilius, Schmidt, Issa, & DiCarlo,
2019; Kietzmann et al., 2019; Li, Bradshaw, & Sharma, 2019; Ra-
jaei, Mohsenzadeh, Ebrahimpour, & Khaligh-Razavi, 2019; Schott,
Rauber, Bethge, & Brendel, 2019; Wyatte, Jilk, & O’Reilly, 2014).
In recent years, several approaches aimed to introduce feedback
connections in deep networks to improve not only biological
plausibility but also model robustness, and accuracy (Huang et al.,
2020; Kubilius et al., 2018; Nayebi et al., 2018; Yan et al., 2019).
Importantly, feedback connections can be trained either in a
supervised fashion to optimize the task objective (e.g., object
recognition) or in an unsupervised way to minimize the re-
construction errors (i.e., prediction errors). In the latter case,
feedback connections are trained to predict the activity of lower
layers, and the network can be described as a hierarchical gen-
erative model. More generally, top-down predictions represent
expectations about lower layers activity, updated based on the

https://doi.org/10.1016/j.neunet.2022.10.020
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ncoming sensory evidence over iterations. This interpretation
bout the role of top-down connections finds its natural place
n a prominent framework in Neuroscience, namely Predictive
oding (Huang & Rao, 2011; Rao & Ballard, 1999).
The Predictive Coding (PC) paradigm in Neuroscience is en-

orsed by a large body of neuroscientific experimental evidence
Baldeweg, 2006; Garrido, Kilner, Stephan, & Friston, 2009; Ho-
wy, Roepstorff, & Friston, 2008; Kilner, Friston, & Frith, 2007;
awel Zmarz, 2016), but see Kevin S. Walsh and McGovern (2020)
or a critical review of experimental evidence in favor and against
he PC framework. It characterizes perception as an inference
rocess in which sensory information is combined with prior ex-
ectations to attain the final percept. Accordingly, PC postulates
wo fundamental terms: predictions and prediction errors (PEs).
onsidering the visual system as a hierarchical structure, these
wo signals interact between subsequent brain regions in an iter-
tive process. Ideally, the interplay between feedback predictions
nd feed-forward PEs converges over iterations into a state in
hich predictions fully represent the sensory information and PE

alls to zero. Although several models implemented and described
his dynamic in different conditions (Alamia & VanRullen, 2019;
riston & Kiebel, 2009; Spratling, 2010), the functional role of
hese two main actors remains largely unexplored.

Here, we address this question by taking a computational
erspective and leveraging current state-of-the-art deep neural
etworks used in visual object recognition. The key insight in
ur approach consists in hyper-parameter optimization, based
n the functional benefit of each connection; we then evaluate
he outcome across various experimental (noise) conditions. Our
pproach significantly extends our previously developed frame-
ork for visual perception (Choksi et al., 2021) by systematically
ptimizing hyper-parameters to investigate the functional benefit
f each connection under various noise conditions. On the one
and, from a Neuroscience point of view, our results supported
he hypothesis that feedback plays a crucial role in the cortical
rocesses involved in biological vision. On the other hand, from
machine learning perspective, our simulations demonstrated a
ore robust class of models based on an established biologically

nspired framework.

. Methods

.1. Predictive coding dynamics

Irrespective of the considered architecture, we implemented
he proposed predictive coding dynamics through a stack of mod-
les called PCoders. . As in Choksi et al. (2021), the activity of each
Coder mi at time-step t is driven by four terms, as described in
he following equation:

i(t + 1) = µmi(t) + γFi(mi−1(t + 1), θ ff
i )

+ βBi+1(mi+1(t), θ
fb
i+1) − α∇ϵi(t), (1)

i(t) = MSE(Bi(mi(t), θ
fb
i ),mi−1(t)), (2)

where Fi computes the feed-forward drive of the ith PCoder with
parameters θ

ff
i , and Bi+1 computes the feedback drive (prediction)

with parameters θ
fb
i+1 given mi+1. The gradient ∇ϵi(t) is calculated

with respect to the activity of the higher layer (mi(t)) as suggested
in predictive coding theory.

A specific hyper-parameter modulates each term. First, each
PCoder’s activity is initialized by a feed-forward pass, i.e., without
considering memory or top-down connections, in line with ex-
perimental observations in biological visual systems (VanRullen
& Thorpe, 2001a, 2001b). Then, at successive time-steps, the
281
activity is determined by several terms. First, a memory term,
regulated by the µ hyper-parameter, that retains information
from previous time-steps, essentially acting as a time constant.
The γ and β hyper-parameters modulate the feed-forward drive
and feedback error terms, which reflect information from the
lower and higher layers, respectively. The modulation of the first
three terms is normalized, i.e. β + γ + µ = 1. Lastly, the α

hyper-parameter modulates the feed-forward error term, which
aims at reducing the prediction-error, i.e. the mean squared error
(MSE) between the prediction by a PCoder and the activity of the
lower one (or the ‘‘input stimuli’’ in case of the first PCoder). As an
implementation detail, we multiply α by a scaling factor (see sup-
plementary section A.2) to remove the effect of batch, layer, and
(de)convolution kernel size. A generic schematic of the proposed
PC dynamics is illustrated in Fig. 1B. As postulated by predictive
coding formulation, the feedback and feed-forward error terms
regulate each PCoder’s activity to reduce prediction-errors over
time. Importantly, the dynamic described above is equivalent
to the one proposed by Rao and Ballard (1999), with the only
difference being the feed-forward term (for the mathematical
proof see Choksi et al., 2021).

2.2. Architectures

Shallow model. We first implemented a shallow three-layer CNN
with two additional dense layers having 120 and 10 neurons,
respectively. As shown in Fig. 1A, the convolutional layers have
12, 18 and 24 channels and a kernel size equal to 5 × 5. Max-
pooling operations with stride equal to 2 were applied from
lower to higher layers. In this network, we consider each con-
volutional layer as the feedforward module (F) of a separate
PCoder. Each PCoder predicts the lower one’s activity through
a bilinear upsampling operation with scale factor equal to 2,
to approximate reversal of the max-pooling operation, followed
by a transposed convolutional layer with window size equal to
3 × 3 (i.e., feedback modules B). The number of channels for
the transposed convolution is set in accordance to the prediction
target.

Extending to deep architectures. Given a very deep architecture, it
is not computationally efficient to assign every layer to a separate
PCoder’s feedforward drive. Instead, we assigned a segment of
feedforward network’s layers to each PCoder (i.e. each PCoder’s
F is a sequence of backbone’s layers). We took advantage of
‘‘Predify’’, a python package introduced in Choksi et al. (2021),
that allows to introduce PC dynamics in pre-trained feed-forward
networks. In the present paper, we introduce PResNet18 and
PEffNetB0 by adding the proposed PC dynamics to feed-forward
ResNet18 and EfficientNetB0 architectures, respectively.

To explore more diversity over input images and network
depth, we examined PResNet18 and PEffNetB0 on CIFAR100 and
ImageNet, respectively. For PEffNetB0 we used the original Ef-
ficientNetB0 architecture with pretrained weights on ImageNet
as the feed-forward backbone; However, in order to improve
ResNet18 performance on small CIFAR100 images, we lowered
the kernel size of the first convolutional layer to 3 × 3 and
omitted its following max-pooling layer to prevent information
loss in early layers.

We implemented the block-wise PC dynamics into ResNet18
and EfficientNetB0 by splitting their layers into five and eight
PCoders, respectively (see supplementary section A.1). Regardless
of the feed-forward architecture, we used a general procedure
to define the feed-forward (F) and feedback (B) drive modules.
Assume that there are n blocks of layers in the feed-forward
network. Let y = fi(x) denote the computation done by block

i where x and y have the size (cin, hin, win) and (cout , hout , wout ),
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Fig. 1. Predictive Coding dynamics. (A) Architecture of the shallow model,
composed of three convolutional layers and two fully connected ones. (B)
Generic block diagram for updating PCoder’s activity. Each PCoder’s activity (mi)
is a combination of four terms at each time-step; Feedforward drive which calls
a particular segment of the feedforward backbone’s layers (Fi) using the activity
f the previous (hierarchically lower) PCoder (mi−1) as the input, Feedback drive

which calls a particular network (Bi+1) on the following (hierarchically higher)
PCoder’s activity (mi+1), Feedforward error, which is the error’s gradient between
the activity of the previous PCoder and its prediction generated by the current
PCoder, and Memory term which is the activity of the current PCoder at the
previous time-step. Each term is modulated by a specific hyper-parameter.

respectively. Then, Fi is fi and Bi is a 2D up-scaling opera-
ion by the factor of (hin/hout , win/wout ) followed by a trans-
posed convolutional layer with cout channels and 3 × 3 window
ize.

.3. Training parameters

upervised feed-forward. In both shallow and deep models we
rained the feed-forward (θ ff

i ) and feedback (θ fb
i ) parameters sep-

arately with different loss functions. First, we trained θ
ff
i to op-

timize the cross-entropy loss (classification) without using the
iterative PC dynamics (i.e., in one forward pass). Accordingly,
we used a cross-entropy loss with Stochastic Gradient Descent
(SGD) optimizer for the shallow model with learning rate 0.01
and momentum 0.9. In the case of deep networks, we trained the
modified ResNet18 on CIFAR100 training images for 200 epochs
using SGD optimizer with initial learning rate 0.1, momentum 0.9,
and weight decay 5e-4. We applied learning rate decay factor 0.2
at epochs 60, 120, and 160. For PeffNetB0, we used the pretrained
ImageNet model described in Tan and Le (2019).

Unsupervised feedback. Next, we optimized θ
fb
i s with reconstruc-

tion objectives, that is the MSE between the activity of PCoders
and their top-down reconstruction on the next time-step. This
unsupervised approach is akin to a generative process, in which
higher layers predict the activity of lower layers, in line with the
predictive coding framework. For the shallow network we used
an SGD optimizer with learning rate 0.01 and momentum 0.9.
While for both of the deep architectures, we employed Kingma
and Ba (2014) optimizer with learning rate 0.001 and weight
decay 5e-4 for 50 epochs.

Supervised feedback. In the shallow model, we also explored the
role of the top-down connections when their parameters are
trained for classification rather than reconstruction (as in the
previous case). In this case both the θ

ff
i and θ

fb
i are optimized

simultaneously for 10 time-steps to minimize the cross-entropy
loss. We used an SGD optimizer with learning rate = 0.005 and
momentum = 0.9. Since the learning takes place over time-steps,
the network optimizes the weights given the PC dynamics de-
scribed in Eq. (1). Importantly, during learning we kept the hyper-
parameters values to γ = β = µ = 1/3 and α = 0.01.
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2.4. Training hyper-parameters

After the training of the network’s parameters, we froze them
(including the statistics of batch normalization layers) and opti-
mized uniquely the hyper-parameters γ , β and α (with µ con-
strained to be 1−β −γ , see supplementary section A.2). Particu-
larly, we repeated the optimization multiple times with different
noise types and levels, to investigate the role of each term given
different levels of perturbation. We considered a Cross-Entropy
loss function averaged across time-steps. In the shallow model
we used an Adam optimizer with learning rate equal to 0.001, a
weight decay equal to 5e-4 and a batch size of 128 images. For
each noise type and level, we repeated the experiment with 10
random initializations of each hyper-parameter drawn from the
uniform probability distribution in the interval [0, 1]. We used
Adam optimizer with the same weight decay for deep models;
however, we employed two separate learning rates equal to 0.01
for γ and λ, and 0.0001 for α. We set batch-size to 128 and
16 for PResNet18 and PEffNetB0, respectively. All the scripts and
the trained parameters of the main experiments are available on
GitHub.2

2.5. Stimuli

The parameters of both the shallow and the deeper networks
were trained on clean images, using the training set of CIFAR-
10, CIFAR-100 and ImageNet, while the test-set was used to
compute each network’s accuracy. The hyper-parameters were
optimized using different levels and types of noise. Regarding
the shallow model, we used additive Gaussian and Salt & Pepper
noise, spanning 3 different levels (Gaussian: σ = 0.2, 0.4 and
0.8; Salt & Pepper: pixel percentage = 2%, 4% and 8%). We used
CIFAR100-C, a dataset containing five levels of 19 different cor-
ruption types (Hendrycks & Dietterich, 2019) to train PResNet18’s
hyper-parameters. Finally, in order to train hyper-parameters of
the deep PEffNetB0, we used the ImageNet validation set and
applied five levels of Gaussian (σ = 0.5, 0.75, 1, 1.25, and 1.5) and
Salt & Pepper (percentage = 5%, 10%, 15%, 20%, and 30%) noise.

3. Results

3.1. Three-layer model

We first tested our hypothesis on a shallow model composed
of three convolutional and three dense layers (see panel A of
Fig. 1). The advantage of choosing a smaller network consists
in promptly exploring several approaches before replicating in
deeper state-of-the-art networks. Specifically, we investigated
the role of each term in Eq. (1) when training feedback weights
for reconstruction or classification (unsupervised vs supervised),
(1) via some ablation simulations, and (2) regarding the robust-
ness to adversarial attacks .

3.1.1. Influence of feedback connections: reconstruction vs. classifi-
cation

We first assessed the role of the feedback and each term
in Eq. (1) when the top-down parameters were optimized for
reconstruction. After having trained the forward weights for clas-
sification (Supplementary Figure 5A), we trained the feedback
weights optimizing the reconstruction loss of each PCoder (Figure
5C). This approach is in line with the PC interpretation, in which
top-down connections generate predictions to explain lower lay-
ers’ activity (i.e., minimize prediction errors, or the reconstruction

2 https://github.com/artipago/Role_of_Feedback_in_Predictive_Coding

https://github.com/artipago/Role_of_Feedback_in_Predictive_Coding
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Fig. 2. Shallow model results. (A) The plots show the hyper-parameters (HPs) value relative to the clean images as a function of the noise levels. Each column shows
the relative HPs trained in different conditions: supervised, unsupervised, without feedback error, or forward error. The first row shows the feedback error term, the
memory, and the forward drive term, the second row shows the forward error term on a separate scale, for Gaussian (solid line) and Salt & Pepper (dashed lines)
noise. In all conditions, the feedback-error and forward-error terms increase with the noise levels. (B) Performance of different models at the last time-step. The
models implementing PC dynamics (in green and cyan) perform better than equivalent feed-forward networks, especially when trained in an unsupervised fashion
(cyan). (C) Performance of the PC models, as a function of the noise levels, measured at the last time-step. Contrasting supervised (SUP) and unsupervised (UNSUP)
models reveals the effects of feedback training objective, whereas comparing the ablation models with UNSUP shows the effect of each error term on accuracy. (D)
The graph shows the median perturbation to obtain a successful attack using different HPs. Orange and red bars have higher feedback and forward error terms
(paler colors correspond to smaller error terms), and blue and black bars represent the feed-forward and the full model, respectively. Our simulations reveal that
PC models with higher feedback values (orange, black bars) are more robust to adversarial perturbations. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
loss). In this case backward weights are trained in an unsuper-
vised fashion. Once both forward and backward connections were
optimized (for classification and reconstruction, respectively), we
froze all parameters and trained only the hyper-parameters (γ ,
β and α in Eq. (1)). As shown in Fig. 2A, with both Gaussian
and Salt & Pepper noise the hyper-parameter modulating the
top-down feedback (i.e., β in Eq. (1)) increases as a function of
the noise level, supporting the hypothesis that top-down con-
nections are crucial for visual processing in noisy conditions.
Remarkably, also α, which modulates the amount of bottom-up
prediction-error, increases with the noise level for both types
of noise. Similar results were obtained when training the top-
down parameters for classification rather than reconstruction
(i.e., supervised approach). As in the unsupervised case, when
freezing the parameters and optimizing exclusively the hyper-
parameters for different noise levels, we observed an increase
of both bottom-up (α) and top-down (β) errors as a function
of the noise level. Yet, Fig. 2C shows that top-down parameters
trained for reconstruction proved more robust to noisy images
than those trained for classification. Next, we compared the net-
works’ performance with equivalent forward networks. First, we
trained (on clean images) four types of forward networks: either
having the same forward architecture as the shallow network
(labeled ‘‘same’’ in Fig. 2B, and resulting in a slightly smaller
number of parameters), or having a larger number of parameters
by increasing either the kernel size, or the number of features,
or the layers (labeled ‘‘kernel’’, ‘‘feat’’ and ‘‘deep’’, respectively).
As summarized in Fig. 2B, both networks implementing predic-
tive coding dynamics (in cyan and green in the figure) perform
systematically better than all the forward networks, irrespec-
tive of the noise type and level. This result demonstrates that
feedback connections, and specifically predictive coding dynam-
ics, can improve overall classification accuracy, and specifically
that recurrent connections trained for reconstructions improved
network robustness to noise.
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3.1.2. Ablation studies
We then investigated how selectively removing the top-down

or the bottom-up error term influences the results. Importantly,
we focused specifically on the unsupervised network, whose top-
down parameters are trained for reconstruction, and that better
represents the PC dynamics. In each condition we trained the
hyper-parameters after the ablation, including the case of noise-
less input. Supplementary Figure 4B shows the actual values of
the hyper-parameters in all conditions. As shown in Fig. 2A, when
removing the top-down error term, the forward error hyper-
parameter increases with the noise levels and doubles its value as
compared to the full model (labeled ‘‘unsupervised’’ in the figure).
On the other hand, when removing the forward error term, we
observed an increase of the feedback term with the noise lev-
els, as in the full model. Concerning the networks performance,
Fig. 2C reveals that removing the top-down feedback degrades
the accuracy with higher noise levels (especially with Gaussian
noise), confirming the conclusion that top-down feedback plays
a crucial role in the processing of degraded images.

3.1.3. Adversarial attacks
To further confirm the hypothesis that top-down feedback

is important for robustness, we froze the networks (feedfor-
ward, full predictive coding, or ablated networks) with manual
configurations of the hyper-parameters and then tested their
robustness against targeted L∞ Random Projected Gradient De-
scent (RPGD) (Madry, Makelov, Schmidt, Tsipras, & Vladu, 2017)
and Basic Iterative Method (BIM) (Goodfellow, Shlens, & Szegedy,
2014) attacks, after unrolling them for 10 time-steps to keep their
depths constant. We use Foolbox API 2.4.0 (Rauber, Brendel, &
Bethge, 2017) and measure the median perturbation required to
successfully fool the networks. As shown in Fig. 2D, we observe
that networks with higher top-down feedback (two orange bars
in the figure have α = 0 and γ = β = µ = 0.33; and
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= 0.5, γ = 0.3, µ = 0.2, respectively) reveal better robustness
o the attacks as compared to the equivalent forward network
in blue in the figure, with γ = 1 and all other hyper-parameters
et to zero). Interestingly, a forward network leveraging only the
eed-forward error shows a similar (lack of) robustness to the
ttack as the forward network (in red in the figure, both networks
aving γ = 1, and α = 1 and α = 2, respectively; all other hyper-
arameters set to zero). Additionally, adding the feed-forward
rror to the model with top-down connections, slightly reduces
ts robustness (black bars in the picture, both networks with

= 1 and γ = 0.3, while β = µ = 0.33 and β = 0.5
= 0.2, respectively). These results confirm that top-down

onnections are useful for adversarial robustness (as shown on
different dataset with a different PC implementation by Huang
nd colleagues Huang et al., 2020), but also suggest that feedfor-
ard error correction does not help adversarial robustness. This

s likely because the feedforward prediction errors emphasize
he input perturbation, which the generative feedback was not
rained to account for.

.2. Deep models

.2.1. Shared hyper-parameters
Similar to the three-layer network, we examined PResNet18

ith a single set of α, β , and γ , that is shared between all
he PCoders. In this experiment, we followed the unsupervised
raining approach explained for the three-layer network using
he CIFAR100 dataset. After having optimized the top-down con-
ections for reconstruction, we froze the weights and trained
he hyper-parameters to minimize the average cross-entropy loss
ver five time-steps. We performed this optimization indepen-
ently on each noise type and noise level of the CIFAR100-C
ataset.
Fig. 3A shows the average hyper-parameter values across all

9 noise types relative to those learned using ‘‘clean’’ images.
onfirming the results of the shallow model, we observed that the
oles of feedback and feed-forward error become more crucial as
he noise level increases. Importantly, for all levels of noise, the
verage accuracy change across time-steps reveals a very robust
but marginal) improvement with respect to the feed-forward
esNet18 (at time step t = 0).

.2.2. Separate hyper-parameters
Encouraged by the results in the ‘‘shared’’ approach described

bove, we decided to provide each PCoder with a separate set
f hyper-parameters. Our reasoning was that different stages
f the hierarchical visual processing would benefit differently
rom the combination of top-down and bottom-up information,
hus granting to the network more flexibility in accounting for
ifferent representations across different layers.
As in the previous experiment, we trained PResNet18’s hyper-

arameters on CIFAR100-C images. Moreover, in order to validate
ur previous results on a more complex dataset, we trained
EffNetB0’s hyper-parameters on the ImageNet2012 validation
et for five levels of Gaussian and Salt & Pepper noises.
Introducing a separate set of hyper-parameters in each PCoder

esulted in a very significant boost in recognition accuracy of both
etworks, under all conditions. As illustrated in the last column
f Fig. 3B, PResNet18 consistently improved the recognition accu-
acy across time-steps on all noise types and levels, revealing an
verage improvement around 6% in the most noisy condition, and
lready after the first time-step. Remarkably, we could replicate
hese results using the deeper network PEffNetB0 with eight
Coders. As shown in Fig. 3C, PC dynamics with different hyper-
arameters per PCoder yielded an impressive increase in accuracy
bove 20% and above 15% in the worst condition of Gaussian and

alt & Pepper noise, respectively.
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In all of our experiments with deep architectures (includ-
ng those with shared hyper-parameters), we used the same
et of noisy stimuli to train hyper-parameters and evaluate the
ecognition accuracy. Notably, we notice an accuracy drop in
he last time-step. We argue that this drop relates to using a
ross-entropy loss averaged over time steps, together with the
ell-known vanishing gradients problem (Bengio, Simard, & Fras-
oni, 1994; He, Zhang, Ren, & Sun, 2016). As a result, the optimal
ecrease in the loss value is obtained by improving the accuracy
n the intermediate time-steps.

We then investigated the trend of hyper-parameters across
Coders. This analysis shed some light on the role of the hyper-
arameters as a function of their hierarchical stage in the net-
ork. Remarkably, we obtained very consistent results on both
etworks, and across different noise types. The first column in
anels B and C of Fig. 3 shows the values of hyper-parameters
s a function of PCoders for the medium noise level (level 3,
esults do not change across noise levels, see supplementary
igures 10–12). Regardless of the considered model, we found
hat the PCoder with the largest amount of feedback error hyper-
arameter (indicated by a circle in the figure), is consistently
ituated at the lower layers of the network, whereas the feedback
ends to zero at higher layers. This suggests that the beneficial
ffects of top-down connections are best achieved at lower layers
f the visual hierarchy, where high-level expectations shape low
evel features to maximize the final classification.

In addition, the second and third columns of Fig. 3B, C con-
irmed our previous results, revealing how the feedback-error
erm increases as a function of the noise levels in the PCoder with
ts highest values (i.e., the second for PResNet18, and either the
irst or the second in PEffNetB0, depending on the noise type).
his result confirms once again the hypothesis that robust object
ecognition requires more top-down influence (i.e., feedback and
eed-forward error terms) as the level of noise increases.

. Discussion

.1. Summary of the results

Starting from an established framework in Neuroscience,
amely Predictive Coding (PC), we investigated the role of top-
own feedback connections in models of vision. The significance
f our work spans across Neuroscience and Machine Learning,
roviding novel contributions to both fields. First, our results
emonstrated how predictive coding dynamics increase the net-
ork’s robustness to various types of noisy stimuli compared
o equivalent feed-forward networks. Additionally, systematic
ptimization of hyper-parameters revealed how the feedback
ontribution increases with the noise severity, especially in the
arly stages of the network, providing important information
bout the role of top-down processes in visual processing. Com-
ared with prior studies, which also showed the benefit of adding
enerative feedback to forward models (Choksi et al., 2021;
uang et al., 2020; Li et al., 2019; Schott et al., 2019), one original
spect of our approach is our empirical procedure, in which we
et the optimization process converge to the optimal solution in
ach noise level.

.2. Previous work

Previous studies explored the supervised approach to train
eedback connections for classification rather than reconstruction
bjectives. Feedback Networks (Zamir et al., 2017) introduced
op-down and temporal skip connections in a recurrent con-
olutional module, demonstrating an increase in performance



A. Alamia, M. Mozafari, B. Choksi et al. Neural Networks 157 (2023) 280–287

h
c
c
l
v
(
a
l
r
c
i
s
i

Fig. 3. Values of hyper-parameters and accuracy of the deep predictive coding networks. (A) PResNet18 with shared hyper-parameters that are trained on CIFAR100-C
images. (B) PResNet18 and (C) PEffNetB0 with separate hyper-parameters that are trained respectively on CIFAR100-C and ImageNet under Gaussian and Salt & Pepper
noise. Plots in the first column show the hyper-parameters as a function of PCoders from input to top layer under medium noise level. The circles indicate PCoders
with maximum feedback error. In middle columns, relative values of hyper-parameters are plotted across noise levels. In case of separate hyper-parameters, the
PCoder with maximum feedback error is shown. For each noise level, the accuracy difference to the first time-step (i.e. feedforward backbone) is depicted in the
last column. Error bars show standard error of the mean (SEM) over 19 CIFAR100-C noise types. In all cases, the networks achieve accuracy gain by utilizing more
feedback and forward error as the noise severity increases. See supplementary Figures 7–12 for the absolute values of hyper-parameters and changes in recognition
accuracy per noise type and level.
followed by improvements in early features representation, taxo-
nomic predictions, and curriculum learning. Similarly, Nayebi and
colleagues (Nayebi et al., 2018) proposed a ConvRNN architecture,
incorporating gating and skip connections, which significantly
improved object recognition performance. Considering models
advocating more explicitly for biological plausibility, Linsley and
colleagues (Linsley, Kim, Veerabadran, & Serre, 2018) suggested
another recurrent vision model, equipped with horizontal and
gated recurrent units (hGRU). Its performance improves specifi-
cally in recognition tasks involving long-range spatial dependen-
cies. Supported by experimental studies (Kar et al., 2019), Kubilius
and colleagues also proposed a brain-inspired architecture named
CorNet, which includes feedback and skip connections. Interest-
ingly, it reveals high neural similarity to cortical visual areas such
as V4 and IT (Kubilius et al., 2018).

In the PC domain, Chalasani and Principe (2013) proposed a
ierarchical, generative model based on PC dynamics, including
ontext-sensitive priors on the latent representations. Their ar-
hitecture demonstrated how top-down connections from higher
ayers are instrumental in solving lower layers ambiguities, pro-
iding some noise robustness. The model proposed in Wen et al.
2018) is the closest one to ours. Despite following PC dynamics
nd the principal similarities, their model presents some critical
imitations. More specifically, all weights are trained for object
ecognition only at the last time step, resulting in a biologi-
ally implausible behavior, in which near-chance performance
s observed until the final iteration. A more in-depth compari-
on between this work and our proposed method is presented
n Choksi et al. (2021). In this previous work (Choksi et al.,
285
2021), we introduced the Predify package used to augment any
forward network with predictive coding dynamics, and we in-
vestigated the robustness of different networks’ to adversarial
attacks (considering a fixed and pre-determined set of hyper-
parameters). Finally, Huang and colleagues (Huang et al., 2020)
implemented unsupervised feedback connections by optimizing
for ‘‘self consistency’’ between the input image features, latent
variables and label distribution. Despite a different dynamics, PC
principles inspired their implementation, which also provided
some robustness against gradient-based adversarial attacks on
Fashion-MNIST and CIFAR10.

4.3. Insights for and from neuroscience

It is possible to implement the role of top-down feedback ei-
ther as an unsupervised, generative process which predicts lower
layers’ activities, or as a supervised, discriminative process to
optimize classification. Besides being more biologically plausible,
our simulations with the shallow model revealed that the unsu-
pervised approach is more robust to noise than the supervised
one, as shown in Fig. 2B. However, when trained with supervision,
feedback connections do not converge to the unsupervised solu-
tion, as shown in Figure 5C which compares the reconstruction
errors in shallow models optimized for classification (supervised)
or reconstruction (unsupervised).

Interestingly, when we independently optimized each PCoder
in deeper networks (roughly equivalent to different brain regions
across the hierarchy of visual processes), we observed consis-
tently higher modulation of top-down activity in lower regions,
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nd relatively less top-down feedback in higher areas. Choksi
t al. (2021) further demonstrate that the proposed biologically-
nspired feedback dynamics iteratively project the noisy inputs
owards the learned data manifold, similar to previous studies
sing different approaches (Jalal, Ilyas, Daskalakis, & Dimakis,
017; Meng & Chen, 2017; Samangouei, Kabkab, & Chellappa,
018; Shen, Jin, Gao, & Zhang, 2017). Future research may test
his prediction directly in biological brains by recording cortical
ctivity at different stages of the visual hierarchy, and validate
he hypothesis that the influence of top-down connections (as
easured in increased spike rate or synaptic efficacy) increases
ith noise level in early visual areas (Oude Lohuis et al., 2022).
Our results demonstrated how top-down and bottom-up pro-

esses influence perception in different challenging conditions.
owever, how does the brain modulate each term’s contribu-
ion (i.e., each hyper-parameter) during natural vision? Attention
echanisms may be responsible for the regulation of top-down
rocesses by increasing feedback response during noisy condi-
ions (Baluch & Itti, 2011; Feldman & Friston, 2010). Accordingly,
t could be possible to envision a model inspired by current
ransformer architectures where an attention system modulates
yper-parameters based on input features or top-down expecta-
ions (for example based on the match between keys and queries,
n which queries are either inferred from the data or set arbi-
rarily based on some context-based prior) (VanRullen & Alamia,
021). In fact, top-down and bottom-up streams may be helpful
r detrimental in different conditions. Our results reveal that
eed-forward error corrections are beneficial for noisy images,
ut do not improve accuracy in the case of adversarial attack.
ne may speculate that, in the latter case, the attack perturbs
he sensory information such that it is more unreliable than
noisy input, making it necessary to rely more on top-down
xpectations rather than on bottom-up features. Further study
ay be needed to test this hypothesis directly. On the other hand,

op-down information may be harmful in certain conditions, as
n visual hallucinations: in this case top-down priors may lead to
erceive items that are not present in the image, as we showed
n a previous study (Pang, O’May, Choksi, & VanRullen, 2021). De
acto, expectation is another important process that modulates
op-down feedback in the human brain (De Lange, Heilbron, &
ok, 2018; Summerfield & De Lange, 2014). In our model, the
orward pass initializes the activity in each layer based on the first
rocessing of the input (i.e., without the recurrent PC dynamic).
owever, it is possible to initialize the network’s activity based
n top-down beliefs, according to PC dynamics: the last layer
f the hierarchy encodes the predictions of the expected input
i.e., a given class in a classification dataset), and propagates
uch predictions to initialize the activity of lower layers, similarly
o the brain processes involved in sensory expectations (Kok &
e Lange, 2015; Summerfield & Egner, 2009). Future work could
xplore how such expectations may influence the network behav-
or and accuracy. Besides, there has been a raising excitement in
ooking at the advantage of learning in Predictive Coding, over the
revailing back-propagation method (Millidge et al., 2022; Song,
ukasiewicz, Xu, & Bogacz, 2020; Song et al., 2022). In addition to
his excitement, our results and others reveal a new perspective
n the robustness of dealing with noise and adversarial attacks.
t would be exciting in future research to see how these efforts
ogether push towards learning paradigms based on Predictive
oding rather than back-propagation ones.
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