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Superposition mechanism
as a neural basis for understanding
others

Wataru Noguchi'™, Hiroyuki lizuka2, Masahito Yamamoto'? & Shigeru Taguchi??

Social cognition has received much attention in fields such as neuroscience, psychology, cognitive
science, and philosophy. Theory-theory (TT) and simulation theory (ST) provide the dominant
theoretical frameworks for research on social cognition. However, neither theory addresses the
matter of how the concepts of “self” and “other” are acquired through the development of human
and nonhuman agents. Here, we show that the internal representations of “self” and “other” can

be developed in an artificial agent only through the simple predictive learning achieved by deep
neural networks with the superposition mechanism we herein propose. That is, social cognition can

be achieved without a pre-given (or innate) framework of self and other; this is not assumed (or is

at least unclear) in TT and ST. We demonstrate that the agent with the proposed model can acquire
basic abilities of social cognition such as shared spatial representations of self and other, perspective-
taking, and mirror-neuron-like activities of the agent’s neural network. The result indicates that the
superposition mechanism we propose is a necessary condition for the development of the concepts of
“self” and “other” and, hence, for the development of social cognition in general.

The problem of other minds has puzzled philosophers and scientists for centuries. Since the twentieth cen-
tury, studies on this problem have been based on two dominant theories: theory-theory (TT)'~ and simula-
tion theory (ST)*. Theorists of TT argue that understanding or “mindreading” of others is achieved through
naive-psychological (or “folk-psychological”) conceptual schemes that agents use to understand other agents’
unobservable mental states. In contrast, theorists of ST claim that in order for agents to understand the mental
states of others, they need a kind of mental simulation in which the agents use their own mental states to infer
the corresponding mental states of others. Based on these ideas, neuroscientists have attempted to uncover the
brain processes related to other minds from the perspectives of TT and ST”-!°. However, one important point
seems to be missing from these theories. Both presuppose that “self” and “other” are pre-given as two different
frames. Based on this presupposition, they attempt to clarify how the self can make inferences about other minds
using only the resources available within the self. However, do we have pre-given frames of self and others from
the beginning of our experience as newborns? It is even possible in adult social cognition that information about
self and others is not always processed separately based on the separate frames of “self” and “other” given in
advance. For example, de Bézenac et al. argue that ambiguity in self-other processing plays an important role in
the adaptive, flexible, and healthy sense of self in children and adults''.

There are some researchers who challenge the standard view of TT and ST and argue against their individu-
alist and mentalizing explanations of social cognition. These researchers are proponents of interaction theory
(IT)!*16, which claims that interactions between agents play a fundamental role in human development and
sociality. They criticize the view that human agents unilaterally observe other agents and make inferences about
others’ mental states using their own internal resources, such as theories of mind and simulation mechanisms.
We believe that this is an important theoretical advance. However, interaction theorists do not (at least explic-
itly) relativize the assumption that there are pre-given frames that are recognized as self and other. They stress
that mutual interactions play a constitutive role in social cognition from the beginning of human life but do not
seem to be attempting to demolish the pre-existing concepts of “self” and “other” We question this remaining
assumption. It is more natural to assume that the contrasting concepts of “self” and “other” can be obtained
only in a process of learning. In other words, we can assume that a human agent does not have the concepts of
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Figure 1. Different views of development of the self and the other. (a) The self pre-exists, and representation
of the other is acquired by using theories of mind or simulations. (b) Two different frames of the self and other
are pre-given, and their contents are developed through mutual interaction. (c) The self and the other are

not pre-given frames but are differentiated through learning. In this process, the contents of their minds are
synchronized and differentiated at the same time.

self and other from the beginning of its existence; rather, they are acquired through the process of learning by
gradually being contrasted against and related to each other.

In summary, the standard views (TT and ST) assume that the self pre-exists and acquires representations of
others step by step using theories of mind or simulations. This can be illustrated as follows: a pre-existing frame
(a self) is filled with contents from the beginning, and the self uses its own resources to fill the content of another
empty frame (the other) (Fig. 1a). Some researchers, namely, interaction theorists, oppose this view and claim
that there are mutual relationships between the self and others right from the outset and that these frames (self
and other) are simultaneously filled with contents through interaction in the development process (Fig. 1b). We
do not enter into the debates between TT, ST, and IT in this paper. However, we would like to point out that
none of these theories explicitly questions the pre-existing concepts of self and others. We assume that there
are no pre-existing frames of self and other and that these concepts themselves are acquired through learning
(Fig. 1¢). From the viewpoint of an agent, the concepts of self and other are acquired in one and the same process
of experience, starting from a situation where there is neither self nor other.

Obviously, the sensations given to an agent in the first stage do not have any particular indications that they
belong to the self or to the other. For the very agent, these sensations are nothing more than external stimuli,
even if they are considered sensations belonging to a particular body from the third-person perspective. Using
these “anonymous” sensations, we must obtain the representations of self and other as a result of learning. If
this assumption holds, what mechanism makes it possible to learn and obtain the representations of self and
other starting from a stage in which there is no clear distinction between them? If we can specify the underlying
mechanism and reconstruct the process of learning that is enabled by it, our assumption will be more plausible.

First, let us outline the requirements for a possible mechanism at the conceptual level. In the initial stage,
given that self is not clearly distinguished from other, we have no reason to think that given sensory information
must be used on behalf of only one agent. There may be a mechanism by which the given sensory information is
used in multiple processing paths, which give us multiple ways to interpret the sensory information. This does
not mean that socially interacting agents (at least humans) have one circuit for each of the other agents and
process the information for each agent separately. This one-to-one correspondence between circuits and agents
would be unreasonable because, in this case, the agents would need as many circuits inside them as the number
of other agents they encounter. Furthermore, they do not have circuits in advance that correspond to self and
other (Fig. 2a). It is more natural to assume that each agent has only one circuit that models any agent (including
the self). In this case, the given sensation is processed through multiple paths, and the results are then processed
by a single circuit (Fig. 2b). That is, an agent uses the same, single neural circuit for “anyone” in general. We can
assume that social agents obtain a single concept of agent while distinguishing self and others at the same time.
This assumption allows us to consider that self and others can be equated to each other at a certain level without
abolishing their differences.

Based on these ideas, we propose a novel neural mechanism that can build a single internal model that is
applicable to “anyone,” which we call the “superposition mechanism. In this mechanism, a single flow of sensory
inputs is encoded by two different neural modules, and the sensory features that are encoded in different ways are
then further processed by a single module without distinction. By this process of duplication and superposition,
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Figure 2. Two different conceptual models of the self and the other in sensory processing. (a) Model with
multiple internal agent models for the self and others. (b) Model with a single internal agent model.
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Figure 3. Schematic view of the superposition network. Red and blue lines indicate the processing of process-1
and process-2, respectively. Striped lines with red and blue indicate two parallel processes.

we can model the above-mentioned specific relationship between self and other. The representations of self and
other are not given in the mechanism in advance but obtained only by learning.

Of course, it is known that self-other differentiation involves a great variety of interactions between infants
and their caregivers or other people. Obviously, it is impossible to simulate all of these interactions. We attempted
to determine by simulation what kind of mechanism would, at a minimum, allow us to differentiate between
ourselves and others while also relating them. To keep the conditions minimal, we decided to provide only
visual and motor information to the agent. Our model cannot simulate all of the diverse and complex processes
of self-other differentiation but only abstractly simulates the perspectival representations that depend on the
perspectives of self and others. Although it is difficult to map this ability to a specific stage of infant development,
there is no doubt that this ability is so fundamental that without it, the understanding of self and others, and
thus social cognition, would be impossible.

Result

Based on our hypothesis, we conducted experiments by implementing the “superposition mechanism” using a
deep neural network"”. In our experiment, an agent with the superposition mechanism moves around in a virtual
environment where another agent is present and learns only to predict visual sensation. Then, we analyzed the
internal representations developed as the result of the predictive learning to investigate how they can be inter-
preted in terms of the frames of “self” and “other”

Superposition network. Our superposition mechanism, shown in Fig. 2b, was implemented by a deep
neural network model. We call the constructed model the superposition network (Fig. 3). Deep neural networks
have recently been used to simulate the development of various cognitive abilities through learning'8-?'. Our
proposed superposition network, implemented on a simulated agent, was trained to predict future vision based
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on the history of visual and motor sensations, and the developed abilities were investigated. In the current study,
we consider a situation with two agents, agent-1 and agent-2, where the superposition network implemented on
agent-1 learns the visuomotor sensations of agent-1.

The superposition network as a whole is trained to predict the visual sensations of agent-1 by receiving visual
and motor sensations of agent-1. We briefly described the processes within the superposition network (see the
“Methods” for the details). The input sensations propagate through two different process paths, i.e., process-1
and process-2. First, visual sensations are converted into visual features by two encoders (Visual Encoder-1 and
Visual Encoder-2). For the proprioceptive sensations of motion, the raw motion commands of agent-1 are used
without any conversions. Then, these two visuomotor features in the two process paths are processed by the same
shared module (Shared Module). Shared Module is a recurrent neural network with a long short-term memory
(LSTM)*, which can retain memories. This means that Shared Module can process the current sensory features
based on the memories of past sensory features and processing results. It should be noted that using Shared
Module does not mean that all the information is processed in a mixed manner together. The memories are
maintained independently for process-1 and process-2 and processed separately so that Shared Module gener-
ates two separate outputs. However, the use of Shared Module imposes the constraint that the way of processing
must be the same. This allows Shared Module to simultaneously generate two different interpretations of a single
sensation using the same generation manner. A subsequent module (Visual Predictor) integrates the two outputs
of Shared Module in a mixed manner to predict future visual sensations.

Although modules in the superposition network (Visual Encoder-1 and Visual Encoder-2, Shared Module,
and Visual Predictor) have different structures by design, these modules have no specific function at the initial
stage, similar to infants, as the neural weight parameters are randomly initialized. The superposition network is
trained to predict future vision. The learning process of the model is designed according to the predictive coding/
processing theory?® (which, incidentally, has attracted attention as a theory that provides an unified explanation
of brain functions). It is already known that predictive learning enables deep neural network models to learn
abstract representations in a self-supervised manner*-2¢.

Shared spatial representation. Our simulated environment is shown in Fig. 4a. The superposition net-
work was trained to predict agent-1’s vision. Within a single trial, agent-1 moves around in the environment.
In contrast, agent-2 does not move within a single trial but is instead randomly placed at the beginning of each
trial. To correctly predict visual sensation, the network is expected to learn to recognize agent-2’s locations. In
this experiment, the motion commands of agent-1 themselves were used as the motion feature of process-1, and
a zero vector was used for process-2.

After the training, the superposition network was able to predict future vision, including agent-2’s appearance
(Fig. 4b and Supplementary Video 1). We visualized the neural activations of Shared Module in two-dimensional
space by using principal component analysis (PCA) (see the “Methods” for details) and found that the neural
activation patterns of process-1 and process-2 represented the locations of agent-1 and agent-2, respectively;
the neural activation patterns shown in the PCA space are arranged in correspondence with the spatial relation-
ships of the agents’ physical locations. Thus, the superposition network developed the representations of spatial
location for both agent-1 and agent-2 simultaneously in the single Shared Module. Notably, the same neural
activations were induced in process-1 and process-2 (which correspond to agent-1 and agent-2) for the same
physical locations (Fig. 4c and Supplementary Video 1). The neural activation patterns that we found are con-
sidered to be similar to the social place cells that represent individuals’ spatial locations without distinguishing
the individuals themselves?’-%°, That is, neurons that fire when an agent is in a certain location also fire when it
observes that other agents are in the same location. It is as if its own location and the locations of other agents
are encoded in the same module. We also observed a gradual differentiation of the representations of spatial
locations in Shared Module by regression analysis of the agents’ locations from neural activations (Fig. 4d). In the
early stages of learning, the agents’ locations could not be accurately predicted from the neural activities of either
process-1 or process-2, but as learning progressed, the locations of agent-1 and agent-2 could be well predicted
from the activities of process-1 and process-2, respectively. In other words, the networks gradually developed
the representation of the spatial locations of agent-1 and agent-2 starting from no representation of the agents.

Perspective-taking by decoding. The above analysis of Shared Module revealed that the two different
but shared representations of spatial locations of agent-1 and agent-2 are obtained in process-1 and process-2,
respectively, through predictive learning. During predictive learning, the visual encoders also learned to encode
the same visual sensation as different visual features to organize the spatial representations of agent-1 and agent-
2. Then, we investigated what visual features are encoded by decoding them as visual sensations. Visual decoding
allows us to identify what the network “sees” in process-1 and process-2.

To decode the feature vectors, we first trained an additional visual decoder network (Visual Decoder) to
reconstruct the input visual sensation from the encoded feature vectors of process-1 (Fig. 5a). Although it is
only trained for process-1, the trained Visual Decoder can also be used to decode the visual features of process-2
(Fig. 5b), as the structure of the visual encoders are the same and the encoded features are used as inputs to
Shared Module. By decoding the visual features of process-2, we can visualize them in the form of visual sen-
sation. The decoding process is considered to be the interpretation of what the module sees in process-2 (see
“Methods” for details).

Then, we found that the decoded visual sensations were similar to what agent-2 actually sees (Fig. 5c—e, and
Supplementary Video 2), which was never provided beforehand to the network. This result means that the super-
position network interpreted the single visual sensation to construct not only the view from the perspective of
agent-1 but also that from the perspective of agent-2. It also means that the superposition network acquired the
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Figure 4. Spatial representation of agent-1 and agent-2 obtained in the superposition network. (a) The
simulated environment where agent-1 and agent-2 exist. The agents sense a 360° panoramic view as a vision

via the omnidirectional camera. (b) Visual images obtained by agent-1. The ground-truth visions (left) and

the visions predicted by the trained superposition network (right) are shown. The black object shown in each
image is agent-2, and the red, green, blue, and yellow objects are visual landmarks. (c) Neural activations of
process-1 and process-2 of Shared Module. The neural activations of both processes are displayed separately in
two-dimensional space by PCA, with the colors indicating the agent’s location (see “Methods”). Left, process-1’s
neural activations, which are colored based on agent-1s location; middle, process-2’s neural activations, which
are colored based on agent-2’s location; right, a color map that defines the mapping from the agent’s location to
the color of the neural activations. The variances explained by the first and second principal components were
0.45 and 0.42, respectively. (d) Regression analysis on the neural activations of Shared Module for process-1 and
process-2. The mean squared error between the true locations of the agents and the locations predicted from
the neural activations by linear regression models are shown. Red and blue are the results of regressions from
the neural activations of process-1 and process-2 to the locations of agent-1 and agent-2, respectively. The lines
show the changes in the regression errors during learning, while the points indicate the beginning of learning.

basic ability for visual perspective-taking, which is to understand what an agent sees when it stands at another
agent’s location.

Generating another agent’s motion. During predictive learning, agent-2 did not move over time. The
superposition network was also trained for the case where agent-2 moved. Agent-2 moved according to three
different policies of movement patterns. In situations where agent-2 moves, to correctly predict visual sensation,
the network has to take into account the changes in time that are not caused by agent-1’s movements.

To take into account these changing visual sensations, an additional module was added to the trained super-
position network to generate motion features (Fig. 6a). We call this additional module Motion Generator. Motion
Generator receives the visual feature and outputs vectors of process-2, which are used as the motion feature of
process-2. The motion feature generated by Motion Generator can change the internal states of Shared Module
in process-2 and consequently the visual prediction. Motion Generator was also trained only to predict the
visual sensation as in the previous experiment and was never supervised using any teaching signals, such that
the output became the actual motion of agent-2.

After training, the superposition network was able to correctly predict the future vision of agent-1, including
the appearances of mobile agent-2. Then, the neural activations of process-2 were analyzed by PCA in the same
way as previously described (Supplementary Video 3). The superposition network predicted future vision by
updating the neural activation in correspondence with agent-2’s spatial location by using Motion Generator. We
also found that Motion Generator’s outputs when observing agent-2’s behaviors showed similar values to those
of agent-1’s motion as if agent-1 had moved around in the same way as agent-2 (Fig. 6b). These developed motor
representations shared between agent-1 and agent-2 are conceptually similar to mirror neurons in the sense
that the observation of agent-2’s behaviors from the perspective of agent-1 elicits mirroring neural activations
that occur when agent-1 is performing the same behaviors®. The results indicate that predictive learning alone
allows the superposition network to interpret visual sensation to construct the motion command that should
have generated agent-2’s behavior.
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Figure 5. Visual decoding from the parallel-processed visual features. (a) Reconstruction of agent-1’s vision
from process-1’s visual feature by Visual Decoder. (b) Decoding of process-2’s visual features as agent-1’s vision
by Visual Decoder. (c) Example reconstructed and decoded visions from the visual features of process-1 and
process-2. The ground-truth visions of agent-1 and agent-2 (left), and the reconstructed and decoded visions
(right). The visions are displayed for two different placements of agent-1 and agent-2. (d) Heatmaps showing the
differences between the decoded visions and agent-2’s true visions at each location over the arena. The heatmaps
are displayed for two cases where the placements of agent-1 and agent-2 were the same as those for each case in
(c). (e) Histogram showing the differences between the reconstructed or decoded visions and the ground-truth
visions of agent-1 and agent-2. Error bars indicate the standard deviations of the errors [see “Methods” for the
details of (d) and (e)].

Discussion

Inside agent-1, we identified the neural activation patterns that correspond to the actual places and visual per-
spectives of agent-1. These can be interpreted as the representations of the “self” for agent-1. Inside agent-1, we
also found the activation patterns that correspond to the actual places, visual perspectives, and motion commands
of agent-2. These can be regarded as the representations of the “other” for agent-1. As we reported, the representa-
tions found inside agent-1 contain characteristics similar to those of social place cells and mirror neurons. This
result strongly suggests that the representations in question correspond to what we call the representations of
“self” and “other” It is important to note here that the frames of “self” and “other” were not given in advance to
agent-1. Rather, agent-1 acquired the above representations of “self” and “other” through learning only.

TT and ST seem to assume that there is a pre-given framework for the self and others that is already present
when one starts to understand others. According to these theories, agents fill in the blanks corresponding to
other people’s minds with certain contents using theories of mind or simulations. However, it is possible to
assume that agents begin their experience from undifferentiated general perceptions and acquire the concepts
of self and other through learning only (IT does not mention this explicitly). Our experiments showed that this
is actually possible. To understand others, agents do not need to have a pre-given framework with empty spaces
reserved for the self and other. Instead, they need to have only a minimal mechanism for processing in a shared
module information that has been processed through multiple paths. This simple mechanism of duplicating and
superposing information is a possible candidate for the minimal requirement for social cognition.

According to TT and ST, an agent needs to “reuse” its own pre-existing internal information to understand
others (using theories of mind or simulations). In contrast, the superposition mechanism we propose allows
agents to process information about the self and others without distinguishing them from the beginning. As it
were, at a certain level, one can understand others as one understands oneself (and vice versa). We can also add
that in the superposition mechanism, understandings of others are not achieved by using high-level cognitive
functions such as theories of mind or simulation on the basis of a pre-given framework of self and other. Instead,
the basis for understanding others develops simultaneously with the development of concepts of self and other.
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Figure 6. Generation of agent-2’s motion by the superposition network. (a) Schematic view of the
superposition network with Motion Generator. (b) Sequences of Motion Generator’s outputs while Motion
Generator was receiving visual features, where agent-2 was moving under the policies of turning around in the
clockwise and anticlockwise directions. Sequences of actual motion are also shown. The correlation coefficients,
which were calculated while the network ran over 300 sequences, between the actual motion of agent-2 and
Motion Generator’s output were 0.87 and 0.88 for neurons one and two, respectively.

Our superposition mechanism can be linked to other findings in social cognitive neuroscience. Recent studies
have provided evidence that these shared activations for self-experiences and empathic experiences for others
are actually shared representations between them rather than just correlated activations*"*2. The superposition
mechanism that enables the acquisition of shared representations of self and other is consistent with these find-
ings. The self-other distinction observed in the superposition mechanism is also related to the real brain. The
right temporoparietal junction (rTPJ) is supposed to be responsible for the distinction between self and other in
the brain®?-%, as well as the visual perspective-taking ability****. In the superposition network, visual encoders
perform functions equivalent to visual perspective-taking, as well as the distinction between self and other from
a single visual sensation. Therefore, we can assume that the visual encoders in the superposition mechanism play
a similar role to the social functions of the rTPJ in the biological brain. The inferior parietal lobule (IPL), which
is adjacent to and partly overlaps r'TPJ, is also known to be related to visual perspective-taking®. This fact enables
us to relate the superposition network to further empirical findings. It should be noted that the visual encoders
did not acquire self-other distinction and visual perspective-taking as independent functions but rather acquired
the self-other distinction in the form of visual perspective-taking. This is consistent with the consideration
that visual perspective-taking is necessary for self-other distinction®**’. Further, the core of the superposition
mechanism, which simultaneously incorporates the seemingly contradictory processes of sharing the module
and distinction by two different paths, might be related to the finding that the self-other distinction enhances
the abilities of empathy and social cognition'*®*. Finally, although not investigated in the current study, the
superposition mechanism possibly explains the confusion between self and other. A study using transcranial
magnetic stimulation (TMS) showed that when the function of the right IPL is impaired by TMS, performance
in self-other distinction is disrupted*’. Taking a similar approach, for example, if the visual encoders, which are
possibly equivalent to the rTPJ and IPL, are impaired and information about others is passed to the path for
self, or vice versa, self-other confusion could occur. This confusion of self and other is a natural consequence of
the use of the shared module.

Herein, we describe the limitations of the current simulation study. First, our model does not reflect the
complexities of the real world. The environment and agents’ motions are reduced to a simplified form. Recent
machine learning and deep learning research have developed more powerful and flexible architectures to deal
with complex data*"*2. It could be possible to extend the superposition network to real world situations by intro-
ducing these advanced architectures. However, this would make the model too complex and make it difficult to
obtain conceptually clear insights. Our simplified model allowed us to clearly demonstrate the development of
“self” and “other” under the superposition mechanism. Of course, we acknowledge that there are still important
factors in real-life situations that our model does not adequately reflect. For example, in the actual development
of “self” and “other” in humans, there is a non-negligible asymmetry between the amount of experience we have
about ourselves and others. In the current simulation, agent-2 is always present in the situation given for agent-1;
however, in the real world, there can be situations where no other agents are present and an agent is interacting
with the environment alone. This kind of asymmetry definitely affects the developmental process of “self” and
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“other” By introducing asymmetries into the simulation, it may be possible to investigate, for example, how an
agent’s ability to differentiate itself from others varies depending on the degree of asymmetry, including the pres-
ence or absence of others. This is an interesting topic of research, but here we have tried to keep the situation at
its simplest, so that only the most basic structures stand out clearly.

Second, the high-level cognitive abilities of mentalizing and mind-reading, i.e., inferring others’ internal
mental contents such as thoughts or beliefs and attributing them to the others, were not obtained by the super-
position network. What this study investigated was not mentalizing and mind-reading themselves but rather a
mechanism that underlies these abilities. Mentalizing and mind-reading presuppose both that the self and other
are differentiated and that the other is an agent analogous to the self. This means that mentalizing and mind-
reading require a more basic ability that we model in our superposition mechanism. The current model is not
expected to recognize false beliefs* that others have about the world (e.g., about the location of objects). There
are some studies that model mentalizing or mind-reading, such as the ability to recognize that others have false
beliefs**°, but they have only cut out a limited aspect of social cognition as a target. This is a highly developed
aspect of social cognition which does not represent a basic ability that can be applied to all other aspects of
social cognition. In contrast, we targeted the most basic ability that is prerequisite for social cognition in general,
including mentalizing and mind-reading.

Third, whether a mechanism equivalent to the proposed superposition mechanism exists in the biological
brain remains an open question. This question is beyond the scope of our paper. However, it may be possible
to add some statements regarding this issue. It has been shown that there exist shared neural activations when
we empathize with others***. Certainly, their contribution to social cognition is still controversial, but there
are more than a few researchers who support the idea that there is a link between shared neural activations and
social cognition®>*%. It is natural to assume that shared neural activations are strongly related to our experiments.
However, the direction of our question differs from that of the majority of the neuroscientists discussing this
issue. In neuroscience, the main question is whether the shared neural activations contribute to social cogni-
tion, and if so, how they are used for social cognition. However, our theoretical simulation model is intended to
show how such shared neural activations can be developed. Our results demonstrated that if the superposition
mechanism exists in the brain, the basic abilities to support social cognition can be acquired naturally. This
means that the shared neural activations can be interpreted as a consequence of the superposition mechanism.
Although this remains a hypothesis, it can be tested by neuroscience in terms of our superposition mechanism.

In conclusion, as suggested above, our results have implications for the neuroscience of social cognition.
They shed light on the question of how social place cells, visual perspective-taking, and mirror neurons are
formed in human agents. These abilities to understand others are obtained not through supervised learning
with engineered teaching data but rather only through sensory experiences such as vision and motion (as occurs
in infants). We consider that the abilities achieved in our experiments are just a few examples of the abilities
enabled by the superposition mechanism. Our results suggest that various kinds of the abilities to understand
others can be explained on the basis of the superposition mechanism, which may provide a new stimulus for
studies of social cognition.

Methods

Virtual environment. Environment and agents. The agents move within a gray, square arena in the simu-
lated environment. The size of the arena is 20 x 20, and the center of the arena is defined as the origin, with
coordinates (0, 0). Consequently, the four corners of the arena are (10, 10), (10, —10), (—10, —10), and (—10, 10).
Four colored cubes are placed as visual landmarks at the corners of the arena. Agent-1 randomly moves within
the arena by selecting its destination randomly at one unit distance per environmental time step and remains
stationary for periods of time with random intervals. The agents do not change their direction; they are equipped
with omniwheels and can move in any direction while sensing an omnidirectional view with an omnidirectional
camera. Agent-2 appears as a black cube. For simplicity, collision between agent-1 and agent-2 are not simulated.

Visuomotor sensations. At every environmental time step £, agent-1 performs motion m} just after it observes
vision v}. Motion m! is represented as a two-dimensional vector that consists of the x and y displacements of
agent-1 in a single time step. The visual image captured by agent-1 v} is of size 16 x 64 and consists of three

channels (RGB) in each pixel.

Deep neural networks. We implement our superposition network by using artificial neural networks,
particularly deep neural networks'”. Deep neural networks consist of many layers of artificial neurons. The
neurons between or within the layers are connected to each other similar to synapses in a biological brain. The
connections have parameters called weights that increase or decrease the signals propagating through the con-
nections. When a network with many layers receives an input, the input propagates through these layers via
weighted connections. The weighted inputs received by each neuron and the biases, another set of parameters,
are summed, and an activation function is applied to the sum to produce the output. The activation function
is usually a nonlinear function such as a logistic sigmoid or ReLU. The entire function of the network, which
iteratively transforms the input through weighted sums and nonlinear activation, is initially just random or not
actually a valid function. Different architectures present with different connectivities between neurons, such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), but even in these cases, the
weights and biases are initially random, and the networks do not have specific functions from the beginning.
The neural network organizes its function by adjusting the weight and bias parameters to achieve some objective.
This process of adjustment is called learning. In recent years, deep neural networks have been able to outperform
humans in games and tasks following the learning process. In particular, there have been reports of deep neural
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network models that show behaviors and aspects of neural activities analogous to those of biological brains
through learning'®%°, which have attracted attention as models for the development of cognitive functions?'.

Processing of the superposition network. The superposition network consists of a shared module
(Shared Module) ¢spared, two visual encoder modules (bgm and ¢e2nc for process-1 and process-2, respectively
(Visual Encoder-1 and Visual Encoder-2), and a visual predictor module (Visual Predictor). At each time step,
the superposition network receives the visual and motor sensations of agent-1 (v} and m}) and generates a visual
prediction (9, ). The one step process of the superposition network is defined by the following set of equations:

fe = bbe VD), (1)

£l = ¢2.00), )

(Bt ct) = bohared (s fmp P15 €15 3)
(hfsc?) = bsharea o> fomps i 1> €115 (4)
Vie1 = Bprea(hys ). (5)

Equations (1) and (2) denote the encoding of visual sensation by Visual Encoder-1 ¢}, and Visual Encoder-2

¢, respectively. Visual Encoder-1 and Visual Encoder-2 are CNNs. CNNs possess local connectivity between
neurons in the hierarchy of layers inspired by the visual cortex of the biological brain and can effectively extract
and integrate features such as edges or shapes in visual images by the operation called convolution. Through
processing by the visual encoders, a single visual image v} from agent-1’s visual sensation is transformed into
compact feature vectors f,!; and f?2. The two visual encoders have the same structure (see the Supplementary
Methods for details) but different weight and biases, and thus the two transformed visual features f,, and £,
are different even though the same visual sensation is input to the visual encoders.

Equations (3) and (4) denote the processing by Shared Module @414 for process-1 and process-2. Shared
Module is a recurrent neural network. Recurrent neural networks possess recurrent connections of neural weights
and can hold information over time through these recurrent connections. We use a long short-term memory
(LSTM)* network, a special type of recurrent neural networks, for Shared Module in the superposition network.
The neural activations passed through recurrent connections are often called internal states. LSTM has two
types of internal states called hidden and cell states, h; and ¢;, respectively. In this paper, we only call the hidden
states /i, the internal states. The same Shared Module is used for both process-1 and process-2. It means that the
visuomotor features of process-1 (f,, and f,\ ;) and process-2 (2, and £ ,) are processed in the same way fol-
lowing our proposed superposition mechanism. By processing the visuomotor features through two processes,
two internal states for both processes, i} and 12, are output by Shared Module. The motion feature of process-1,
% 1> is agent-1’s motion itself, m}. The motion feature of process-2, f2 , is a zero vector in the experiment where
agent-2 does not move and is generated by Motion Generator in the experiment where agent-2 moves.

Equation (5) denotes the generation of visual prediction by Visual Predictor ¢yreq. The two vectors of the
internal states of process-1 and process-2, b} and hZ, are first concatenated as a single vector and further processed
by Visual Predictor to generate a visual prediction. Visual Predictor is also a CNN. In contrast to the visual
encoders, through processing by Visual Predictor, the compact feature vectors are transformed into visual images.

Predictive learning experiment. Predictive learning. 'The parameters of the superposition network are
randomly initialized, and initially, the network does not have any specific function. The parameters of the super-
position network are optimized based on the gradient with respect to the prediction error for visual sensation,
which is often called loss, as the target of minimization. To perform gradient based optimization, the errors
between the predicted visual sensation and true future visual sensation (that is, loss) are calculated as follows:

T
Lpred = Y, {AmseMSE(] 11, vy 1) + AMAEMAE(] 1, vy ) 6)
t=1
where T is the duration of a single sequence (T = 100), MSE and MAE are the mean squared error and mean

absolute error loss functions, respectively, between two vectors, and Avsg and Amag are the coefficients for con-
trolling the importance of these loss terms. MSE and MAE are defined as follows:

N
N 1 N
MSE(,y) =+ D> _Gi =)’ )
i=1
| N
MAEG,y) = ; 15 = yil, (8)
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where N is the number of elements in each vector for which the error is calculated. By minimizing the loss defined
in Eq. (6), the parameters of the network are optimized for predicting visual sensations. The MSE loss produces
a larger gradient for a larger error and a smaller gradient for a smaller error. On the other hand, the MAE loss
penalizes errors equally regardless of their extent. This means that the MAE loss produces a larger gradient for
a small error than the MSE loss. By changing the coefficients for these losses, we can control how much the
network learns to minimize the small errors. Additionally, weight decay, which penalizes larger values of the
parameters, is applied to all network parameters except for the biases. By introducing weight decay, overfitting
to the training data can be mitigated.

To calculate the gradient of the parameters, we use backpropagation through time (BPTT)*. To update the
parameters with the calculated gradients, the stochastic gradient descent method is used. Specifically, we use the
Adam algorithm®. The superposition network is trained 400 times over the training sequences with a mini-batch
size of 10. During the first 200 iterations of training, Apsg = 1 and Amag = 0, while during the last 200 itera-
tions of training, Amsg = 0 and Amag = 1. In the last 200 iterations of training, all parameters except for those
of Visual Predictor are fixed. In other words, only Visual Predictor is fine-tuned to reduce small errors. Thus,
the later training has an effect on the sharpness of the predicted image, but it does not affect how the internal
state of Shared Module is organized.

Visual input masking. For the development of the internal model of the external spatial structure, the visual
input to Shared Module is masked randomly. Concretely, the encoded visual feature vectors f;! and f?2 from the
two visual encoders are replaced with zero vectors with 99% probability at each time step. This masking makes
the LSTM learn to update its internal states by integrating the motion input sequences for correctly predicting
visual images.

Training sequences. For the prediction training, we collect 1000 of agent-1’s visuomotor experiences with a
duration of 100 time steps during which agent-1 moves around while agent-2 does not. At the beginning of each
sequence, the positions of agent-1 and agent-2 are initialized randomly.

Structure of shared module. 'The LSTM constituting Shared Module has 128 hidden units. The superposition
network has two copies of the LSTM module as Shared Module ¢g},404. Each of the two copied LSTMs has its
own internal states i! and h2, which are updated by receiving visual and motion feature inputs, respectively. The
two LSTMs receive visuomotor inputs by the same receptor neurons, and these inputs are processed in the same
way using the same network weights and biases. During the training using backpropagation, as described in
the following section, gradients are propagated to the two LSTMs through two separate processing paths. The
gradients of both LSTM copies are summed and used to update the parameters of the LSTMs. In this sense, the
LSTM modules in process-1 and process-2 are shared.

Structure of visual encoder and visual predictor. Visual Encoder-1 ¢, and Visual Encoder-2 ¢2,. both have
the same structure, which consists of three convolutional layers followed by a fully connected layer; however,
these visual encoders have different weights and biases (see the Supplementary Methods for details of the visual
encoders’ structures). To ensure that the visual feature vectors f,! and f2 do not have large differences in their
values, layer normalization®" is used for the fully connected layer of both visual encoders. Visual Predictor @preq
consists of three transposed convolutional layers following a fully connected layer (see the Supplementary Meth-
ods for details). The fully connected layer of ¢, takes the two parallel internal states of Shared Module as inputs
and integrates them into a single-feature vector.

Visual decoding experiment. Reconstruction learning with agent-15 visual sensation. To visualize the
visual features encoded by the visual encoders, the visual decoder (Visual Decoder) ¢4, is trained to reconstruct
the visual sensation of agent-1. Please note that we use a single Visual Decoder, whereas two different visual
encoders are used. The visual features encoded by Visual Encoder-1, as depicted in Eq. (1), are input to Visual
Decoder, and the visual images are generated as the reconstruction of the input visual sensation.

f/t,liec = Pdec (fvl)- )

During the training of Visual Decoder, only the visual features from Visual Encoder-1 are used as input; those
from Visual Encoder-2 are never used.
For optimizing Visual Decoder, the following reconstruction error is calculated as the loss:

LT = MAE(W),., v1) (10)

The gradients of the loss & " are calculated simply by the backpropagation algorithm. By using the calcu-
lated gradient, the parameters of Visual Decoder are updated by the Adam algorithm in the same manner to the
above predictive learning. This reconstruction training of Visual Decoder is similar to that of an auto-encoder™,
in which an encoder that encodes the input and a decoder that decodes the encoded feature vectors are trained
simultaneously; however, in our experiment, the visual encoders have already been trained through predictive
learning and are fixed during the reconstruction training, and only Visual Decoder is trained. Visual Decoder is
trained 10 times over the training data with a mini-batch size of 10. Weight decay is also applied to all of Visual
Decoder’s parameters except for the biases.
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Training visual sensations. The visual images collected for the above predictive learning, that is, agent-1’s vis-
ual sensation, are also used for the reconstruction learning for Visual Decoder.

Decoding agent-2’s visual sensation. ~ After the reconstruction training, the visual features from Visual Encoder-2
are decoded by using the trained Visual Decoder. To decode the visual features from Visual Encoder-2 after the
training, the visual features from Visual Encoder-2 can be simply input to Visual Decoder, as Visual Encoder-2
has the same structure as Visual Encoder-1;

‘A’inec = ¢d86(fv2)- (11)

The decoded vision is evaluated in terms of the similarity between the visual sensations of agent-1 and agent-2.

Evaluation of the decoded vision. To evaluate the decoded vision in the visual decoding experiment, we collect
visual images for uniformly distributed agent locations as follows. In this case, agent-1 and agent-2 are placed
at locations whose x- and y-coordinates are integers within the range [—9, 9]. The visual images are obtained for
all possible combinations of placements of agent-1 and agent-2. For each placement of agent-1 and agent-2, the
decoded visual image is obtained from agent-1’s visual sensation, and the differences between the decoded vision
and actual agent’s vision are evaluated. To display how the visions decoded from the visual features from Visual
Encoder-2 depend on the actual location of agent-2, the differences between the decoded vision and the visions
of agent-2 for each location over the arena are calculated (Fig. 5d). The differences between the decoded vision
and actual vision are calculated as absolute differences and averaged over pixels in the visual image. Concretely,
the differences between the reconstructed/decoded visions 9}, /73, and the actual visions of agent-1/agent-2 v!
/v are calculated, and the calculated differences between the actual vision and reconstructed/decoded vision are
averaged over all placements of agent-1 and agent-2 (Fig. 5e).

Structure of visual decoder.  Visual Decoder ¢4, has the same structure as Visual Predictor and forms an auto-
encoder with Visual Encoder-1 ¢}, .. Because Visual Encoder-1 ¢}, and Visual Encoder-2 ¢2, have the same
structure, Visual Decoder could also receive the encoded visual feature vector from Visual Encoder-2 ¢2,,.

Experiments related to generating another agent’s motion. Agent-25 behavior. To learn when
agent-2 is moving, agent-2’s behaviors are controlled by simple deterministic policies: turning within the arena
to draw a square in both the clockwise and anticlockwise directions and staying only at the initial location. For
the policy of turning and drawing a square, agent-2’s behavior is controlled by periodically determining its
destination from points (8, 8), (8, —8), (—8, —8), and (—38, 8). The initial location of agent-2 under this policy is
randomly selected from these destination points.

Motion generator. To predict when agent-2 is moving, Motion Generator @ge,,, which consists of an LSTM and
a fully connected layer, is introduced. Motion Generator receives the visual feature of process-2 and outputs vec-
tors of the same size as the motor sensation.

fr%t,t = ¢gen(fv2,t))- (12)

Please note that Motion Generator uses an LSTM, although it is not denoted explicitly in Eq. (12). LSTMs
can take into account the context of the past inputs to generate outputs by using recurrent connections. Thus,
with its LSTM, Motion Generator can predict agent-2’s future movements by considering the past visual inputs.
The generated motion features are input to Shared Module as in Eq. (4), and the visual predictions are generated
following Eqgs. (1)-(5).

Predictive learning with motion generator. 'The superposition network with Motion Generator is also trained to
predict agent-1’s visual sensations. The prediction loss used to train Motion Generator is the same as that given
by Eq. (6); however, only the MAE loss is considered (Avsg = 0and Avag = 1). To minimize the prediction loss,
Motion Generator’s parameters should generate f;2 , so that it properly updates Shared Module’s internal states
to generate the correct visual sensation.

In addition to the prediction of visual images, the superposition network is trained to predict the encoded
visual feature vectors f,, and f;2;; the additional visual feature predlctlon module ([)f predicts visual features from
the internal states of Shared Module: ft 1= (h})and ft 1= (h2), where fr ', 1 is the vector of predicted visual
features. The feature prediction module ¢y consists of two fully connected layers with 128 and 64 hidden units.
Each fully connected layer is followed by ReLU and layer normalization. The training loss for this visual feature
prediction is described as follows:

T

Leature =) _ {MSE(ﬁ1+1>J§1+1) + MSE(ﬁﬂpﬁl)}- (13)

t=1

This auxiliary loss based on abstract-level features helps the network to generate sharp images in the image
generation models®. For the case where only image-level prediction loss is used, the prediction error for small
objects in images has a small effect on the learning; however, when using an abstract-level feature loss, the size of
the objects in the original images is irrelevant. In our case, when agent-2 is distant from agent-1, agent-2 appears
small in the image, and we find that this feature prediction loss accelerated the training of Motion Generator. The
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feature prediction module is trained before Motion Generator, during the training when agent-2 does not move.
During the training of Motion Generator, the parameters of the feature prediction module are fixed.

Motion Generator is trained to minimize loss Lgen = Zpred + Lfeature- BPTT is performed through the
sequence, and the gradients of loss are calculated. Then, the parameters of the network are updated. In this
experiment, only Motion Generator’s parameters are learned, and the parameters of Shared Module ¢, 474, Visual
Encoder-1 ¢}, Visual Encoder-2 ¢2,, and Visual Predictor ¢,y are fixed. To encourage Motion Generator to
generate a proper motion feature for correct visual prediction, the visual inputs for Shared Module are always
masked, except at the first time step, and only Motion Generator receives visual inputs. Motion Generator is
trained 200 times over the training sequences with a mini-batch size of 10. Weight decay is also applied to all of
Motion Generator’s parameters except for the biases.

Training sequences. We collect 1000 of agent-1’s visuomotor experiences with a duration of 100 time steps for
each of the three policies for agent-2 for a total of 3000 collected sequences. While agent-2 moves following its
policies, agent-1 also moves as previously described.

Structure of motion generator. Motion Generator ¢g, consists of an LSTM and a fully connected layer. The
LSTM of Motion Generator has 128 hidden units. The fully connected layer is followed by a hyperbolic tangent
non-linearity. The output motion feature 2, is a two-dimensional vector, the same as agent-1’s motion vector.
Through the hyperbolic tangent function, the range of each element £ , is (—1, 1), the same as agent-1’s motion.

Visualization of neural activation in shared module. To visualize the neural activations in Shared
Module, that is, the internal states ht1 and hf, the dimensionality of the internal states was reduced to two by using
PCA (principal component analysis). The internal states of process-1 during the processing of all training visuo-
motor sequences by the trained superposition network were collected. Then, the eigenvectors of the covariance
matrix over the collected states were calculated, and the first and second principal components were obtained
by projecting the internal states using the first and second eigenvectors. The first and second components of
the internal states of process-1 were displayed in two-dimensional space. The internal states of process-2 were
mapped onto two-dimensional space by using the first and second eigenvectors obtained from the internal states
of process-1; that is, the internal states of process-1 and process-2 were displayed on the same space. The internal
states were colored according to the agent’s location. For coloring the internal states, RGB values were assigned
to each spatial location; red, blue, green, and yellow, corresponding to the four corners of the arena, and linearly
interpolated colors were assigned to the inside of the arena.

Code availability
The codes for all of the simulation experiments and analyses in this study are available at https://github.com/
wtrnoguchi/superposition.
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