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Efficient dendritic learning 
as an alternative to synaptic 
plasticity hypothesis
Shiri Hodassman1,3, Roni Vardi2,3, Yael Tugendhaft1, Amir Goldental1 & Ido Kanter1,2*

Synaptic plasticity is a long-lasting core hypothesis of brain learning that suggests local adaptation 
between two connecting neurons and forms the foundation of machine learning. The main 
complexity of synaptic plasticity is that synapses and dendrites connect neurons in series and existing 
experiments cannot pinpoint the significant imprinted adaptation location. We showed efficient 
backpropagation and Hebbian learning on dendritic trees, inspired by experimental-based evidence, 
for sub-dendritic adaptation and its nonlinear amplification. It has proven to achieve success rates 
approaching unity for handwritten digits recognition, indicating realization of deep learning even by 
a single dendrite or neuron. Additionally, dendritic amplification practically generates an exponential 
number of input crosses, higher-order interactions, with the number of inputs, which enhance success 
rates. However, direct implementation of a large number of the cross weights and their exhaustive 
manipulation independently is beyond existing and anticipated computational power. Hence, a new 
type of nonlinear adaptive dendritic hardware for imitating dendritic learning and estimating the 
computational capability of the brain must be built.

A popular method for training artificial neural networks is related to synaptic plasticity (SP), which governs the 
brain adaptation mechanism1 and where the connection strength between two neurons is modified following 
their relative activities2,3. This local adaptation is the foundation of the learning process of artificial neural net-
works (ANNs)4. Classification and representation of practical problems require feedforward networks comprising 
hidden layers to be trained5, which mediate between input and output units6 (Fig. 1a). This is how deep learn-
ing (DL), as a subfield of machine learning, originated, which now outperforms humans in addressing difficult 
problems7,8, such as face recognition, and games (e.g., chess and go)9–11.

In a supervised learning scenario, a feedforward step is initially performed. An input is presented to the 
feedforward network, and the distance between the current and desired outputs is computed using a given error 
function. The backpropagation (BP) procedure is utilized in the next step, where weights are updated to locally 
minimize the error function5,12. This procedure is repeated several times over the training set, until a desired 
test error is achieved.

Traditionally, this DL technique stems from the dynamics of the human brain, however, these two scenarios 
are intrinsically different13. The main reason for this assumption is that BP procedure is biologically implausible, 
as it changes the weight in a non-local manner. The number of routes between an output unit and a weight, via 
hidden layers, is typically large (Fig. 1a). Each route contributes to a weight modification following a combina-
tion of all weights, and nonlinear nodal activation functions along the route. The enormous transportation of 
precise weight information can be performed effectively using fast and parallel GPUs. However, they are evidently 
beyond biological realization.

Results
Long‑lasting assumption of SP.  The current version of imprinted SP is based on mutual, time-dependent 
activity by pre- and post- synaptic neurons3 (Fig. 1b). This is supported by experimental evidence showing adap-
tation typically consumes tens of minutes and incorporates considerable fluctuations14. Its main mechanism is 
the BP signal along the dendrite, which serves as a byproduct of the spiking neuron to its axon 14–16 (Fig. 1b). 
The long transportation distance from the soma to the synapse, along varying conducting dendritic brunches, is 
expected to be noisy and to fluctuate. The main complexity of the SP assumption is that synapses and dendrites 
are connected in series (Fig. 1c). However, existing experiments that stimulate two presynaptic neurons, or pre- 
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and post-synaptic neurons, cannot pinpoint the significant imprinted adaptation location, whether it is located 
at the synapse or at the dendrite. Although there is a consensus on temporal adaptation in synaptic boutons and 
spines, following their recent stimulation patterns, their time independent imprinted adaptation without further 
stimulations is in question. In addition, assuming imprinted SP, one cannot exclude from current experiments 
fast and significant enhanced adaptation in the dendrites connected in series to the synapses.

Dendritic learning.  Results of recent experiments indicate that fast and enhanced adaptation occurs when 
two dendrites are mutually trained, similar to the slow adaptation currently attributed to the synapses17. This 
phenomenon differs from dendritic computation18 based on static dendritic features. Its timescale depends on 
the training frequency and can be reduced to several seconds only19. Although the results pose a question on 
SP, current experiment results cannot exclude slow and noisy SP in parallel to fast dendritic adaptation. Experi-
ments also indicate that certain dendrites demonstrate forward and backward action potentials and nonlinear 
dendritic excitability, which resembles spike waveforms20–22. We begin with the simulation results, where experi-
mental results supporting adaptation within a dendrite are briefly presented.

Realization of DL by a single neuron.  We recently experimentally examined dendritic adaptation by 
mutually training two dendrites17. However, the adaptation sites along the dendrites were obscure. Here, we 
assumed an adaptive strength for each dendritic segment, where each segment additionally functioned as a 
nonlinear amplifier23–31 (Fig. 2a, right).

Implementing BP on a tree architecture was simpler as each weight was influenced by an output unit via one 
route only (Fig. 2a). A weight change was accumulated backward from the output unit along the route, where 
temporarily only a nodal state and its successive weight were required, no long-term memory was needed. 
The quantitative results of such a tree BP (TBP) on a feedforward tree network (FFTN) were presented for the 

Figure 1.   From a biological learning scheme to ANNs. (a) Scheme of two hidden layers of a feedforward 
network, where several routes (black) connect an output unit to a weight (black dashed line). (b) Scheme of a 
neuron (node in a) with two dendrites (gray), an axon (blue), and multiple synapses (green circles). A sub-
threshold synaptic stimulation (black) via the left dendrite arrives at the soma after a spike (red) was generated 
through an above-threshold synaptic stimulation via the right dendrite, thereby strengthening the left synapse 
(enlarged red circle) via a backpropagation signal (red dashed line). (c) Biological scheme of the right neuron 
connecting to the left neuron via axon/synapse/dendrite (blue/green-circle/gray). Artificial scheme as in a 
(bottom).
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recognition of 10 handwritten digits derived from the Modified National Institute of Standards and Technology 
(MNIST) database32.

The architecture we first examined comprised 10 FFTN identifiers, where each network consisted of 784 
(28 × 28) input units, 49 hidden units connected to 16 non-overlapping input units each, and one output unit 
(Fig. 2b). Each FFTN was trained independently to identify one digit. For the selected digit, the output is trained 
toward 1; otherwise, toward 0. The predicted test digit was selected as the FFTN with the maximal output value. 
The training parameter optimization (described in "Methods") resulted in a ~ 0.047 test error. Generalization of 
each FFTN to several FFTNs trained independently using different initial conditions and with a soft committee 
output (described in "Methods") resulted in a ~ 0.034 test error. We note, that training only the weights from 
the input to the hidden units results in an optimized test error greater than 0.47 for fixed, uniform or random, 
weights to the output unit. This significant increase in the test errors indicates the importance of the training of 
the entire FFTN (Fig. 2b), besides weights from the inputs functioning similar to SP. This result is much below 
the success rates of a linear classifier33 and is attributed to the nonoverlapping receptive fields of the nonlinear 
hidden units, where each one is influenced by a small subset of the inputs, and for the nonlinear activation func-
tions of the hidden units with fixed output weights.

Training a fully connected architecture network, with 100 hidden units and 10 output units (Fig. 2c) results 
in a test error of 0.018 only34 (see "Methods"). Each output unit in this architecture is connected to an input unit 
via multiple routes, thus violating the tree structure in terms of nodes. Nevertheless, each output unit was con-
nected to a weight via one route only (Fig. 2c), and thus the principle of TBP holds. In general, TBP holds for 
fully connected input/output layers to their nearby layers and tree structure elsewhere (Fig. 2d).

The biological realization of TBP on these architectures (Fig. 2c) poses the following two conditions: First, 
each weight that connects the input and hidden nodes must be updated 10 times, according to the current output 
values of the 10 output nodes. These updates can be realized asynchronously using, for example, different delays 
for each output unit. Second, error function ǫ is a summation of individual errors of each output unit

as exemplified for the quadratic error function, where Oi/O
desired
i  denotes the output and desired output, respec-

tively. This property holds also for the cross-entropy cost function used in this study (see  "Methods"). Note 

ǫ =

10
∑

i=1

ǫi =

10
∑

i=1

[

Oi − Odesired
i

]2

Figure 2.   From dendritic learning to BP on FFTNs. (a) Neuronal scheme of a dendritic tree (left), synapses 
(green circles), and their presynaptic input neurons (bottom gray circles) and axons (blue). Similar tree scheme 
(right) with a single route (red dashed line) from the output to each input. Each tree segment is characterized 
by weight Wi and nonlinear amplification Ai. (b) Trained FFTN to recognize one handwritten digit. (c) Fully 
connected FFTN with 10 output units, one for each handwritten digit. (d) An example of FFTN with respect to 
weights, where each weight is connected to an output unit via one route only.
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that an output node in Fig. 2c, for instance, can biologically imitate a neuron with a single dendritic tree, using 
an additional output node connected in series to the current one via a single weight. This additional weight 
represents the dendritic route. In principle, the entire network (Fig. 2c) might also be represented by a neuron 
with a ramified dendrite, however, it requires a more complex structure to the output layer and will be discussed 
elsewhere.

Realization of input crosses by a single neuron.  Input crosses that represent higher-order correlations 
among input nodes can enhance success rates34–37. However, their biological realization is questionable as no 
morphological evidence to multiple connections of several axons to one synapse exists, which might accomplish 
input crosses38. In addition, multiple connections of one axon to a neuron is infrequent38 and cannot accomplish 
input crosses. Nevertheless, the byproduct of multiple inputs to a nonlinear dendritic segment amplifier accom-
plishes input crosses (Fig. 3a). Their order and number are further enhanced by nonlinear dendritic segment 
amplifiers closer to the soma, which typically incorporate a vanishing number of newer inputs (Fig. 3b). This 
amplification represents a non-local adaptation mechanism, as dendritic segment amplification is equivalent to 
simultaneous amplification of influx through all its incoming synapses (Fig. 3c).

The addition of 10,000 input crosses among three inputs for each hidden unit, in a micro-canonical manner34 
(described in "Methods"), enhances success rates by ~ 3% for small training datasets comprising 15, 30 and 60 
examples per digit (Fig. 3d). Maximization of success rates using multiple input crosses at the maximal training 
dataset (i.e., 50,000 examples) is a heavy computational task. Nevertheless, a power-law extrapolation of the 
obtained success rates from small training datasets

to the maximal dataset results in a  ~ 0.01 error rate (Fig. 3d), which outperforms the extrapolation of the 
error rate without input crosses, ~ 0.018,34 which is now directly confirmed (see "Methods").

ǫ =
c0

[

examples
digit

]ρ

Figure 3.   Biological mechanism for self-emergence of input crosses. (a) Zoom-in on three inputs (i.e., I1, I2, I3) 
dendritic segment, with nonlinear amplification A(I) = I + I2 , resulting in input crosses. (b) Combining all 
synaptic influx inputs I({Ik}) results in higher-order input crosses. (c) Equivalence between one amplified 
dendrite, f (I) = 3I (left) and where amplification is shifted to its synapses (larger green-circles, right). (d) Log–
log scale of optimized test errors for the architecture presented in Fig. 2c with additional 10,000 input crosses 
trained over 15, 30, 60 and 90 examples/digit and a power-law fit (line), and without input crosses (circles). 
Standard deviation obtained from 10 samples with different initial conditions, i.e. weights and examples. (e) 
Hebbian learning identifier for a digit, consisting of a committee of seven perceptrons, each with 10,000 input 
crosses of order 3 (green background).
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Using input crosses among three inputs achieved slightly better success rates and faster convergence times 
than using input crosses between two inputs34. This observation might indicate the importance of higher-order 
input crosses, where their improvement might stem from the phenomenon of strong first-order phase transition 
for systems with higher-order multi-spin interactions39.

Hebbian learning using a single neuron.  The TBP procedure simplifies the biological realization of DL. 
However, the necessity to precisely calculate derivatives of activation functions and their products with nearby 
weights is beyond known biological hardware capabilities. Thus, using tiny imprecise updates that result in 
accumulated small additive and multiplicative noise to the TBP procedure is expected to only slightly decrease 
the success rates. However, their enhancement entails unavoidable significant deterioration in obtained success 
rates. Here, we have presented another possible solution based on the perceptron local learning algorithm40.

The architecture consisted of 10 FFTNs, each of which consisted of seven perceptrons, with an additional 
10,000 input crosses (see "Methods"). The output of each FFTN was a committee of the seven perceptrons, con-
nected to the output with unit weights (Fig. 3e). Each FFTN was trained independently using the least action 
algorithm41,42 to recognize one digit. For the selected digit, the output is trained to be 1; otherwise, -1. The 
perceptron learning step was performed only when the number of perceptrons with the correct output was less 
than 5. The step was realized on the perceptron with a wrong output and a minimal absolute local field. Thus, 
a test error of ~ 0.029 was obtained (described in "Methods"). Note that the least action algorithm requires the 
knowledge of output local fields of all perceptrons, a non-local decision, but their number is small.

Experimental results supporting intra dendritic adaptation.  Recently, new types of experiments 
have been performed43, wherein the synaptic connectivity of neuronal cultures is excluded (see "Methods") and 
a patched neuron is extracellularly stimulated from several sites using a multi-electrode array (Fig.  4a). The 
experimental results indicate that a neuron functions as a collection of independent threshold units, with a spe-
cific spike waveform for each one43. Specifically, the neuron is anisotropically activated following the origin of 
the arriving signals to the soma, via its dendritic trees43–45, and the neuronal spike waveform varies as a function 
of the stimulation location (Fig. 4b).

These anisotropic properties can demonstrate fast dendritic adaptation17, similar to the slow adaptation 
mechanism currently attributed to synapses3,46,47. We used an online method to identify a pair of differing extra- 
and intra-cellular recorded spike waveforms that represent neuronal activation from two dendritic trees. The 
training procedure involves pairs of an extracellular stimulation that did not evoke a spike and arrived with a 
predefined delay, typically a few milliseconds, after (or before) an above-threshold intracellular stimulation. For 
training at a low frequency (e.g., 1 Hz), a significant effect of adaptation was observed after several minutes and 
was found to be irreversible for a timescale of tens of minutes17. Further, an increase in the training frequency 
(5 Hz) accelerated neuronal adaptation processes to several seconds only19.

The resolution of our experimental setup does not allow to pinpoint the sub-dendritic adaptation sites. Nev-
ertheless, in this work, we presented a support for a dendritic adaptation while two of its branches were trained. 
We used an online method43 to identify a pair of two extracellular electrodes with similar intracellularly recorded 
spike waveforms, but varying neuronal response latency and different critical firing frequencies45 (Fig. 4c), hence 
represented neuronal activation via different branches of the same dendrite (Fig. 4a). Finally, the neuron was 
trained using pairs of extracellular stimulations (Fig. 4d), where the stimulation amplitude threshold of one of 
the electrodes had changed after training (Fig. 4e).

Results indicate an adaption process while stimulating different extracellular electrodes that represent train-
ing different routes of the same dendrite (Fig. 4e) and suggest that the adaptation occurs in a sub-route of the 
trained dendritic tree. This adaptation process is also supported by preliminary results (not shown) where the 
threshold of the route which is associated with the first stimulation in a pair (purple electrode in Fig. 4d), remains 
unchanged after the training process. This phenomenon is the inspiration for the TBP scheme presented in Fig. 2. 
We note that further investigation of the number of sub-dendritic adaptation sites, amplitudes and timescales 
demands longer measurements with higher resolution experimental techniques.

Discussion
SP is the core hypothesis of brain learning, and its reality is challenged by the following two aspects: SP as a 
standalone learning mechanism and in comparison to dendritic learning.

As a standalone mechanism, imprinted SP is a slow and noisy adaptation process, which typically lasts tens 
of minutes and occurs far from the computational element, namely, the spiking soma. The realization of efficient 
learning in ANNs using the biological recipe of SP is obscure. In addition, time lags among influx stimulations of 
the soma via different synapses are a critical parameter that controls the adaptation process. However, these time 
lags are a function of neuronal response latencies that fluctuate and vary dynamically, following previous activi-
ties of connecting neuronal chains48. Moreover, synaptic strengths are typically considerably below threshold49,50 
and many coordinated input timings are required to repeatedly reproduce the same desired neuronal outputs.

A pair of neurons are connected using several elements in a series and in particular synapses and dendrites. 
The long-established hypothesis states the adaptation occurs in synapses, which is generally supported experi-
mentally by training of pre- and post-synaptic neurons. However, this evidence cannot pinpoint the significant 
imprinted adaptation sites, without tracing the signal along its inter-neuronal route. Our experiments demon-
strated significant dendritic adaptation that emerged at least one order of magnitude faster than the common 
scenarios for imprinted SP. Currently, one cannot exclude slow, moderate, and noisy SP in parallel to the meas-
ured dendritic adaptation. Moreover, the number of dendritic branches is in the order of tens51,52, whereas several 
thousands of synapses exist per dendrite. Hence, dendritic segment adaptation is equivalent to simultaneous 
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adaptation of all its incoming synapses (Fig. 3c). This non-local adaptive process is expected to enhance the 
signal-to-noise ratio in comparison to SP.

Learning on dendritic trees, where each weight is connected to an output unit via one route only, represents 
a step toward a plausible biological realization. Tree architectures, although comprising much lesser number of 
weights, have been demonstrated for the MNIST database to achieve success rates closer to unity, which were 
previously obtained using more structured DL architectures. This represents the effectiveness of DL when the 
number of adaptive parameters is in the order of the number of nodes. The realization of dendritic learning using 
10 independent FFTN identifiers, one for each digit, and especially using the Hebbian learning rule, might also 
lead to a better understanding of the biological credit assignment mechanism13,53,54.

The emergence of many input crosses as a byproduct of nonlinear amplification of dendritic segments dif-
ferentiates between the computational power of a single dendrite or neuron from existing CPUs and GPUs. Each 
dendrite has thousands of presynaptic inputs that generate an exponential number of input crosses as segment 

Figure 4.   Experimental results supporting intra dendritic adaptation. (a) 60 micro-electrode array and scheme 
of an intracellular electrode (orange) and three nearby extracellular electrodes (i.e., pink, purple, and green) 
(left). Scheme of a patched neuron recorded intracellularly (orange), two stimulating extracellular electrodes 
(i.e., green and purple) adjacent to one dendrite, and third electrode (pink) near a different dendrite (right). 
(b) Two stimulating extracellular electrodes (i.e., green and purple) generate similar intracellularly recorded 
spike waveforms, which differ from the third one (pink). (c) Neuronal response latency, measuring the time lag 
between an extracellular stimulation and its corresponding evoked spike, for the green and purple extracellular 
electrodes, stimulated at 20 Hz. Response failures are denoted at − 1. The effective firing frequency is presented 
using sliding windows of 100 stimulations (black). (d) Training scheduling consists of 50 repeated pairs using 
δ = 4 ms and f = 5 Hz. (e) Intracellular recordings of threshold estimation by extracellularly stimulating five times 
at 1 Hz for each stimulation amplitude (bottom) using the green electrode, before and after training.
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signals are propagating toward the soma. For a thousand dendritic inputs, for example, there are O(106) input 
crosses of order 2 and O(1021) input crosses of order 7. Assigning independent weights to such a large number of 
input crosses and manipulating their strengths via the BP procedure is beyond existing and anticipated computa-
tional power. Evidently, this large number of cross weights are not independent. Knowledge of dendritic inputs, 
dendritic local weights, and nonlinear amplifiers determines all current cross weights and nodal responses. 
This valid mathematical statement calls for modelling dendritic nonlinear amplification, rather than estimating 
weights independently through BP. In addition, it calls for the learning of the type of the nonlinear nodal activa-
tion functions as an additional tunable parameters, which can control the ratios between induced cross weights 
and their order. We note that the byproduct of a deep architecture scheme, consisting of more hidden layers 
and nonlinear activation functions, is the emergence of cross weights, however, the manipulation of each one of 
them independently is difficult. Thus, the current cost function for training neural networks can be improved by 
training independently many cross weights, where in addition features of the adaptive nonlinear amplifiers are 
changed following the learning process. Furthermore, nonlinear sub-segment dendritic amplifications result in 
non-intuitive phenomena such that amplification is sensitive to the order of dendritic segment inputs. In addition, 
adaptation of one sub-segment due to a nearby input, might have a decaying effect on the strength of subsequent 
sub-sequences, which in turn might create nontrivial dependencies between multiple tunable parameters beyond 
current simulation models. Existing computer hardware that differs from exemplified brain dynamics is distant 
from the possibility of imitating their learning process and estimating their computational capabilities.

Finally, the experimental support of dendritic adaptation must be refined, using a tradeoff between higher 
spatial resolution of dendritic segment measurements and long periods of multiple stimulation scheduling. This 
type of experiment is expected to verify the possible coexistence of SP alongside dendritic adaptation. Qualita-
tive modeling of the main features of dendritic adaptation and their differentiation among various neurons and 
dendrites are required for understanding of neural network dynamics and their computational capabilities.

Methods
Architecture and initial weights, Fig. 2c.  The feedforward neural network consisted of 784 input units, 
2 hidden layers consisting of 100 units each and 10 output units. Weights between successive layers were fully 
connected. Each unit in the hidden and the output layers had an additional input from a bias unit34. We denote 
by W1 and W2 the weights from the input layer to the hidden layer and from the hidden layer to the output layer, 
respectively. The initial conditions of all weights were randomly chosen from a Gaussian distribution with a zero 
average and standard deviation (Std) equals 1. All weights were normalized at the initial condition only19 such 
that all input weights to each hidden unit had a zero average and Std equals 1. In addition, the initial value of the 
bias of each weight was set to 1.

Input.  Each example, X̃m,m = 1, 2, . . . ,M , of the train dataset consisted of 784 pixels, X̃m,p , which their 
values were in the range [0, 255]. The input, X, of the example X̃ , consisted of the original 784 pixels where the 
average pixel value in X̃ was subtracted from each pixel and the Std was set to 1:

Furthermore, an input pixel which had an identical value among all the training examples, e.g., had zero 
variance in all train dataset examples, was set to zero.

Architecture and initial weights, Fig. 3d.  The architecture of this network was similar to the architec-
ture in Fig. 2c, with only one hidden layer and additional 10,000 input-crosses for each hidden unit.

An addition of 10,000 input-crosses was added to the input, Xk,l,j:

where k, j and l are random indices in the range [1, 784] with corresponding different pixels Xk , Xj and Xl for a 
given example. Zero input-crosses in all the train dataset were excluded. Each input-cross was not connected 
more than once to each hidden unit.

After the above-mentioned initial normalization of all weights, the weights of the input-crosses were rescaled:

Forward propagation.  The output of a unit, j, in the first hidden layer for the mth example, for instance, 
a1j,m , was calculated as:

Xm = X̃m −
1

784

784
∑

p=1

X̃m,p

Xm = Xm/std
(

X̃m

)

Xk,l,j = Xk · Xl · Xj

Winput crosses =

√

#regular input

#input crosses
·Winput crosses =

√

784

10000
·Winput crosses

z1j,m =
∑

j

(

W1
ij · Xi

)

+ b1j
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where W1
ij is the weight from the ith input unit to the jth hidden unit, Xi is the ith input, and b1j  is the bias induced 

on the jth unit in the first hidden layer. z1j,m represents the field propagating from the input layer. Each time we 
calculated the field, z1j,m, we subtracted the accumulative average field for the input layer of the previous m− 1 
examples, where Amp1 is a constant representing the amplitude of reduction. Note that z1j,m was not modified 
for m = 1.

The output of the jth unit in the output layer, a2j  , was calculated as following:

where W2
ij is the weight from the ith unit in the hidden layer to the jth output unit, and b2j  is the bias induced on 

the jth output unit.

Back propagation.  We used the cross entropy cost function:

where ym stands for the desired labels, am stands for the current 10 output units of the output layer, and η and 
α are constants. The summation was over all M training examples. The second summation was over all weights 
of the network.

The backpropagation using the momentum method computes the gradient for each weight with respect to 
the cost function. The weights and biases were updated according to:

where t is a discrete time-step, W are the weights, 1 − α is a regularization constant, µ is the momentum constant 
and η is the learning rate constant. ∇WCfirst is the first computed gradient. V was initialized as: V0 = −η · ∇WCfirst

.

Figure 3d optimized parameters. 

Momentum strategy—1 hidden layers

Examples/digit η μ α Amp1 Epoch

15 0.0004 0.95 0.005 0.1 300

30 0.0054 0.978 0.0003 0.000095 300

60 0.0000089 0.9999 0.00017 0.0000975 300

Momentum strategy—1 hidden layers

Examples/digit Epoch Success rate Std

15 300 0.802  ± 0.0142

30 300 0.8533  ± 0.0138

60 300 0.8869  ± 0.0047

z1j,m = z1j,m − Amp1 ·
1

m− 1

m−1
∑

t=1

z1j,t

a1j,m =
1

1+ e
−z1j,m

z2j,m =
∑

j

(

W2
ij · a

1
j,m

)

+ b2j

a2j,m =
1

1+ e−Z2j,m

C = −
1

M

M
∑

m=1

[

ym · log (am)+
(

1− ym
)

· log (1− am)
]

+
α

2η

∑

i

W2
i

Vt+1 = µ · Vt − η · ∇WtC

Wt+1 = (1− α) ·Wt + Vt+1

Vt+1
b = µ · Vt

b − η · ∇btC

bt+1 = bt + Vt+1
b
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Momentum strategy with input crosses—1 hidden layers

Examples/digit η μ α Amp1 Epoch

15 0.0079 0.63 0.00018 0.07 200

30 0.008 0.773 0.00047 0.05 200

60 0.00047 0.961 0.00028 0.1 200

90 0.0003 0.99555 0.0001 0.09 200

Momentum strategy with input crosses- 1 hidden layer

Examples/digit Epoch Success rate Std

15 200 0.8413  ± 0.0082

30 200 0.8894  ± 0.01

60 200 0.921  ± 0.0025

90 200 0.9332  ± 0.0032

Note that in Fig.  3d for 50,000 examples and without input crosses we obtained a test error 
ε = 0.018, which is consistent with a power law34. The parameters used in this optimization are 
η = 0.03,µ = 0.9998,α = 0.0079,Amp1 = 0.0001, epoch = 300. Here we used minibatch = 200, since the opti-
mization over the parameters with high precision was complex.

Architecture and initial weights for FFTN, Fig. 2b.  The feedforward neural network comprised of 10 
identifiers, each consisted of 784 inputs that were divided into groups of 16 consecutive pixels along the rows, 
one hidden layer consisted of 49 units and one output unit. Each unit in the hidden and the output layers had an 
additional input from a bias unit. We denote by W1 and W2 the weights from the input layer to the hidden layer, 
and from the hidden layer to the output layer, respectively. The initial conditions of all weights were randomly 
chosen from a Gaussian distribution with a zero average and Std equals 1. All weights to each hidden unit were 
normalized19 such that they had a zero average and Std equals 1.

Input.  The first hidden layer was not fully connected, therefore the input  X  for each hidden unit was calcu-
lated as:

where Xj represent the different input groups of jth hidden unit.
k = 1,2,.0.16 and p is a number running from 1 to size of input16  .
The average test error for 50,000 examples and 50 epochs was ε = 0.047 and the Std was 0.023.
The test error with committee of 6 trained networks was ε = 0.0339 and the Std was 0.025.
The parameters were: η = 0.023, µ = 0.998, α = 0.0000002, Amp1 = 0.1
It was noted that for the case where inputs were projected randomly to each hidden unit, very similar test 

errors (with less than 1% decrease) were obtained but with increased Std between samples. Similar results were 
also obtained for a similar architecture with 56 hidden units, where each one is connected to 14 inputs instead 
of 16.

Architecture and initial weights, Fig. 3e.  The network comprised of 10 identifiers that each contained 
784 input units with additional 10,000 input-crosses for each hidden unit (see Input), and one hidden layer 
consisting of 7 units each. The input and the hidden layers were fully connected, except the input-crosses. We 
denote by W1 and W2 the weights from the input layer to the hidden layer, and from the hidden layer the output 
layer, respectively. The initial conditions of W1 were randomly chosen from a Gaussian distribution with a zero 
average and Std equals 1. All weights to each hidden unit were normalized19 such that they had a zero average 
and Std equals 1.

Note that W2 weights were set to 1, see Fig. 3e.

Forward and back propagation.  The output of a unit, j, in the first hidden layer for the mth example, for 
instance, a1j,m , was calculated as:

where W1
ij is the weight from the ith input unit to the jth hidden unit, Xi is the ith input and b1j  is the bias induced 

on the jth unit in the first hidden layer. z1j,m represents the field propagating from the input layer.
The weights were updated according to the following:

Xj = [X(k−1)∗p+1 . . .Xk∗p]

z1j,m =
∑

j

(

W1
ij · Xi

)

a1j,m =

{

1 if z1j,m > 0

0 otherwise
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where t is a discrete time-step, W are the weights, 1 − α is a regularization constant, η is a constant learning rate, 
y stands for the desired labels, and a stands for the current output unit.

Note that the update was realized on the perceptron with a wrong output and a minimal absolute local field, 
and only when the number of perceptrons with the correct output was less than 5.

The average test error for 50,000 examples and 50 epochs was ε = 0.029 and the Std was 0.019. The parameters 
were: η = 0.05, α = 0.0002.

Test accuracy.  The network test accuracy was calculated based on the MNIST dataset for testing, containing 
10,000 input examples. The test examples were modified in the same way as the examples in the training dataset. 
Reported averaged test errors and their Std are based on at least 10 samples with different initial conditions.

Optimization.  For a given architecture and number of epochs, the optimization procedure first evaluated 
the test error over a rough grid of the adjustable parameters, followed by fine-tuning grids with higher reso-
lutions. In cases where a complete optimization over a grid was impossible, we optimized sequentially each 
parameter over its 1D grid. Nevertheless, we confirmed that a few different sequential orders of the optimized 
parameters resulted in the same optimized test accuracy and set of parameters.

The optimization was performed independently for each examined dataset size, number of examples and 
number of epochs. The hyperparameters were optimized using several validation sets. Results for the committee 
systems were based on the optimized selected parameters for a single system. The optimized parameters were 
summarized in the presented tables.

We note that cross validation was confirmed using several validation databases consisting each of 10,000 
random examples with the same statistics for each label as in the test set. Averaged results had the same Std as 
reported test errors. Similar results were obtained using a test set with different initial conditions. In addition, 
preliminary results also indicate that databases consisting of random selected examples, also result in similar 
test errors.

Committee.  The test error was further minimized using a soft committee decision based on several repli-
cas, Nc, of the network, which were trained on the same set of examples but with different initial weights. The 
result label, j, for the test accuracy is given by:

where aLj,s stands for the value of the output label j in output layer L and in replica s (j = 0, 1, …0.9).

Experimental methods.  The In-Vitro experimental methods are similar to those of our previous 
studies43,45, and only the modifications are presented.

Animal use.  All procedures were in accordance with the National Institutes of Health Guide for the Care and 
Use of Laboratory Animals and the Bar-Ilan University Guidelines for the Use and Care of Laboratory Animals 
in Research and were approved and supervised by the Bar-Ilan University Animal Care and Use Committee.

Stimulations—MEA.  Extracellular stimulations were applied with an amplitude of [− 900 − 200] mV and 
a duration of [0.2 2] ms.

Neuronal response latency.  The neuronal response latency is defined as the time-lag between a stimula-
tion pulse onset and its corresponding evoked spike measured by crossing a threshold of − 20 mV.

Statistical analysis.  Reported results are based on 8 experiments, using different examined neuronal cul-
tures. Presented results demonstrate an example of a decrease of 100 mV in the stimulation threshold amplitude 
after training. This decrease was observed in all 8 experiments. We detected stable neurons with appropriate 
features of stimulating electrodes (e.g. same spike waveforms with different maximal firing frequencies and 
neuronal responses latencies) in 8 out of 15 examined cultures.

Data availability
Source data are provided with this paper. All other data that support the plots within this paper and other find-
ings of this study are available from the corresponding author upon reasonable request. A prototype simulation 
code in matlab for the FFTN is provided with this paper in GitHub.
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